

PROGRAMMABLE CONTROLLER FP2 ET-LAN Unit Technical Manual

FP2 ET-LAN unit Manual ARCT1F322E-2 '06•11

http://www.mew.co.jp/ac/e/fasys/

Matsushita Electric Works, Ltd.

Safety Precautions

Observe the following notices to ensure personal safety or to prevent accidents. To ensure that you use this product correctly, read this User's Manual thoroughly before use. Make sure that you fully understand the product and information on safe. This manual uses two safety flags to indicate different levels of danger.

WARNING

If critical situations that could lead to user's death or serious injury is assumed by mishandling of the product.

- -Always take precautions to ensure the overall safety of your system, so that the whole system remains safe in the event of failure of this product or other external factor.
- -Do not use this product in areas with inflammable gas. It could lead to an explosion.
- -Exposing this product to excessive heat or open flames could cause damage to the lithium battery or other electronic parts.

CAUTION

If critical situations that could lead to user's injury or only property damage is assumed by mishandling of the product.

- -To prevent abnormal exothermic heat or smoke generation, use this product at the values less than the maximum of the characteristics and performance that are assure in these specifications.
- -Do not dismantle or remodel the product. It could lead to abnormal exothermic heat or smoke generation.
- -Do not touch the terminal while turning on electricity. It could lead to an electric shock..
- -Use the external devices to function the emergency stop and interlock circuit.
- -Connect the wires or connectors securely.

The loose connection might cause abnormal exothermic heat or smoke generation

- -Do not allow foreign matters such as liquid, flammable materials, metals to go into the inside of the product. It might cause exothermic heat or smoke generation.
- -Do not undertake construction (such as connection and disconnection) while the power supply is on.

Copyright / Trademarks

-This manual and its contents are copylighted.

- -You may not copy this manual, in whole or part, without written consent of Matsushita Electric Works, Ltd.
- -Windows and Windows NT are registered trademarks of Microsoft Corporation in the United States and/or other countries.
- -All other company names and product names are trademarks or registered trademarks of their respective owners.
- -Matsushita Electric Works,Ltd. pursues a policy of continuous improvement of the Design and performance of its products, therefore,we reserve the right to change the manual/ product without notice.

Table of Contents

Compatibility With the FP3		vii
----------------------------	--	-----

Chapter 1 Unit Functions and Restrictions

1.1	Feature	s and Structure of ET-LAN Unit 1 - 3
	1.1.1	Features 1 - 3
	1.1.2	Unit Type 1 - 4
	1.1.3	Structure of Network 1 - 5
	1.1.4	Connecting to a Network 1 - 6
	1.1.5	Connections Between Networks 1 - 8
1.2	Overvie	w of ET-LAN Unit Functions 1 - 10
	1.2.1	Function Model 1 - 10
	1.2.2	Communication Functions 1 - 12
		1.2.2.1 MEWTOCOL Communication Function 1 - 12
		1.2.2.2 Transparent Communication Function 1 - 14
	1.2.3	Self Diagnosis Functions 1 - 15
1.3	Restrict	ions on Units Combination 1 - 16
	1.3.1	Restrictions on Current Consumption 1 - 16
	1.3.2	Restrictions on Installation Position 1 - 16
	1.3.3	Restrictions on Number of Units that can be Installed 1 - 17
	1.3.4	Restrictions Based on the CPU Unit Version 1 - 17
1.4	Restrict	ions Relating to Communication Conditions and Functions 1 - 18
	1.4.1	Precautions When Using the FP2 CPU Unit 1 - 18

Chapter 2 Names and Functions of Parts

2.1	Names	and Functions of Parts	2 - 3
	2.1.1	Names and Functions of Parts	2 - 3
	2.1.2	Operating Status LEDs	2 - 4
	2.1.3	Mode Setting Switch	2 - 5
2.2	Connec	tor Pin Layout	2 - 6
	2.2.1	10BASE5(AUI) Connector (with D-SUB 15 pins retainer)	2 - 6
	2.2.2	100BASE - TX/10BASE - T Connector (RJ45)	2 - 6
	2.2.3	External Power Supply Terminal for 10BASE5 (12 V DC)	2 - 6

Chapter 3 Connection for LAN Cable

3.1	Precaut	ions Concerning Installation	3 - 3
3.2	Connec	tion for LAN Cable	3 - 5
	3.2.1	100BASE-TX and 10BASE-T Connections	3 - 5
	3.2.2	10BASE5(AUI) Connections	3 - 6
3.3	Test Mo	de	3 - 7
	3.3.1	Types and Contents of Test Modes	3 - 7
	3.3.2	Running Test Modes	3 - 8

Chapter 4 Confirming the Design Contents

4.1	Address	s Confirmation	4 - 3
	4.1.1	IP Address Confirmation	4 - 3
	4.1.2	MEWTOCOL Station Number Confirmation	4 - 3
4.2	I/O Allo	cations	4 - 4
	4.2.1	Confirmation of I/O Allocations	4 - 4
	4.2.2	Confirmation of Route Numbers	4 - 5
4.3	Confirm	ation of the Contents of the Shared Memory	4 - 6
	4.3.1	Configuration of the Shared Memory	4 - 6
	4.3.2	The Roles Played by the Various Areas	4 - 7
4.4	Handsh	ake Method	4 - 9
	4.4.1	Handshake Method	4 - 9
	4.4.2	Using the I/O for the Handshake	4 - 11
	4.4.3	Using the Shared Memory for the Handshake	4 - 13

Chapter 5 Initialization Processing and Termination Processing

5.1		tion/Termination Processing	
52		ing Procedures	
J.Z		An Overview of the Initialization Processing Procedure	
		An Overview of the Termination Processing Procedure	
	5.2.3	Writing Data to the Initialization Information Setting Area	
	5.2.4	Writing Data to the Routing Information Setting Area	5 - 13
5.3	Reading	Initialization Information	5 - 18
5.4	Sample	Program	5 - 20

Chapter 6 Open Processing and Close Processing

6.1	Open/C	Close Processing	6 - 3
	6.1.1	What is Open Processing?	6 - 3
	6.1.2	Types of Open Processing	6 - 5
6.2	Process	sing Procedures	6 - 8
	6.2.1	An Overview of the Open Processing Procedure	6 - 8
	6.2.2	An Overview of the Close Processing Procedure	6 - 9
	6.2.3	Writing Data to the Connection Information Setting Area	6 - 10
6.3	Readin	g Connection Information	6 - 13

Chapter 7 Computer Link Function

7.1	Compute	er Link Procedure	7	- 3
7.2	An Over	view of the Computer Link Function	7	- 4
	7.2.1	What is the Computer Link Function?	7	- 4
	7.2.2	Commands and Functions Available for Use	7	- 5
7.3	Settings	on the PLC Side	7	- 7
	7.3.1	Connection Information Settings	7	- 7
	7.3.2	Writing to the Shared Memory	7	- 9
	7.3.3	Sample Program	7 -	10
7.4	Comma	nd Communication on the Computer Side	7 -	12
	7.4.1	Communication Data Format 1	7 -	12
	7.4.2	Communication Data Format 2 7	7 -	15

Chapter 8 Data Transfer Function

8.1	Data Tra	ansfer Procedure	8 - 3
8.2	An Over	view of the Data Transfer Function	8 - 4
	8.2.1	What is the Data Transfer Function?	8 - 4
	8.2.2	Commands and Functions that can be Used	8 - 5
8.3	Settings	on the PLC Side	8 - 7
	8.3.1	Connection Information Settings	8 - 7
	8.3.2	Writing to the Shared Memory	8 - 9
	8.3.3	Sample Program 8	3 - 10
8.4	Data Pro	pcessing on the Computer Side	3 - 12
	8.4.1	Communication Data Format ① 8	3 - 12
	8.4.2	Communication Data Format 2	3 - 15
	8.4.3	Communication Data Format ③ 8	3 - 18

Chapter 9 Transparent Communication Function

9.1		view of the Transparent Communication Function		
	9.1.1	What is the Transparent Communication Function?	9	- 3
9.2	Transpa	rent Communication Procedures	9	- 4
9.3	Settings	on the PLC Side	9	- 5
	9.3.1	Connection Information Settings	9	- 5
	9.3.2	Writing to the Shared Memory		
9.4	Commu	nication Processing for Transparent Communication	9	- 8
	9.4.1	Communication Processing Procedure	9	- 8
	9.4.2	5	9 -	10
	9.4.3	Procedure for Reception Processing	9 -	12
	9.4.4	Handshake Signal and Data Area	9 -	15
9.5	Sample	Program	9 -	18
	9.5.1	Sample Program < Initialization to Open>	9 -	18
	9.5.2	Sample Program < Transmission Processing and Reception	9 -	
	9.5.3		9 -	23

Chapter 10 Error Log Function

10.1	Configu	ration of the Error Log Area	10	- 3
	10.1.1	What is the Error Log Function?	10	- 3
	10.1.2	Contents of Error Log Area	10	- 5
10.2	Reading	the Error Log	10	- 7
	10.2.1	Procedure for Reading the Error Log	10	- 7
	10.2.2	Sample Program	10	- 9
10.3	Error Co	ode Contents 1	0 -	10
	10.3.1	Access Error 1	0 -	10
	10.3.2	System Error 1	0 -	15
	10.3.3	Warning Error 1	0 -	16
	10.3.4	Recovery Possible Error 1	0 -	17

Chapter 11 Troubleshooting

11.1	Operatio	on If an Error Occurs	- 3
	11.1.1	Operation If the ALARM LED on the ET-LAN Unit Lights 11	- 3
	11.1.2	Operation If the "E1" or "E2" LED on the ET-LAN Unit Lights or	
		Flashes	- 4
11.2	What to	Do If an Error Occurs	- 5
	11.2.1	If the Alarm "ALM" LED Lights on the ET-LAN Unit	- 5
	11.2.2	If the "E1" LED on the ET-LAN Unit Lights or Flashes	- 5
	11.2.3	If the "E2" LED on the ET-LAN Unit Lights or Flashes	- 6
	11.2.4	Troubleshooting Flowchart	- 8

Chapter 12 MEWTOCOL Communication Procedure

12.1	MEWTO	COL-COM (Computer Link)	12 -	- 3
	12.1.1	Overview of MEWTOCOL-COM	12 -	- 3
	12.1.2	Single Frames and Multiple Frames	12 -	- 7
	12.1.3	List of MEWTOCOL-COM Commands	12 -	. 9
12.2	MEWTO	DCOL-DAT (Data Transfer) 12	2 -	29
	12.2.1	Overview of MEWTOCOL-DAT 12	2 -	29
	12.2.2	List of MEWTOCOL-DAT Commands 12	2 -	31
12.3	MEWTO	DCOL Error Codes 12	2 -	35
	12.3.1	Table of Error Code 12	2 -	35

Chapter 13 Specifications

13.1	Tables c	f Performance Specifications	13 - 3
	13.1.1	General Specifications	13 - 3
	13.1.2	Performance Specifications	13 - 3
	13.1.3	Communication Functions	13 - 4
13.2	I/O Alloo	cation	13 - 5
13.3	Table of	Shared Memory	13 - 7
13.4	Table of	Related Relays, Registers and Instructions 1	3 - 24
	13.4.1	System Register 1	3 - 24
	13.4.2	Special Internal Relay 1	3 - 25
	13.4.3	Special Data Register 1	3 - 26
	13.4.4	Data Transfer Instructions 1	3 - 27

13.5	Minimum Transmission Delay Time	13 - 45
13.6	ASCII Codes	13 - 48
13.7	Dimensions	13 - 49

Chapter 14 Sample Program

14.1	Sample	Program	14	- 3	3
	14.1.1	An Overview of the Sample Program	14	- 3	3
	14.1.2	Workstation Sample Program	14	- 5	5
	14.1.3	Communication Setting Program on PLC Side	14 -	10)

Record of changes		R·	- '	1
-------------------	--	----	-----	---

Compatibility with the FP3

CPU units that can be used

The ET-LAN unit should be used in combination with the following CPU units.

	CPU unit Ver. 1.08 or higher
FP2SH	CPU unit Ver. 1.02 or higher

Differences with the FP3 ET-LAN unit

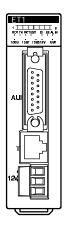
The main differences between the specifications and operation of the FP2 ET-LAN unit and the FP3 ET-LAN unit are given in the table below. Refer to the reference page numbers given for each item for details regarding specifications and operation.

Item	FP2 ET-LAN unit	FP3 ET-LAN unit
Communication interface (See page 1 - 6.)	100BASE-TX, 10BASE-T, and 10BASE5	10BASE5
Mode setting switch (See page 2 - 5.)	 1. 100BASE - TX/10BASE - T and 10BASE5 switch 2. Reserved 3. Normal mode/test mode switch 4. Test mode operation selection 	 Test mode operation selection Handshake mode selection ONLINE/OFFLINE switch Normal mode/test mode switch
Mounting position/qty. limits (See pages 1 - 16 and 1 - 17.)	The following quantities can be inserted in any of the master backplane slots (including Multi-wiring link unit MEWNET-W2 mode) With the FP2 CPU unit: 3 units With the FP2SH CPU unit: 8 units	The following quantities can be in- serted in any of the master back- plane slots (including MEWNET-H link unit) FP3/FP10SH CPU unit: 3 units
Handshaking (See page 4 - 9.)	I/O handshaking and shared-memory handshaking can be used simultaneously.	The mode setting switch is used to switch between I/O handshaking and shared memory handshaking
Handshake signals (See pages 4 - 11 to 4 - 16.)	I/O handshaking signals Deleted: I/O handshake mode flag (XE) Shared memory handshake signal Deleted: I/O handshake mode flag (bank 0: 360H bit E) Added: Expansion complete signal area 2 (bank 0: 366H)	
Shared memory (See page 13 - 7.)	Connection data notification block (bank 0: 2E0H to 35FH) Added: Receive processing complete code (offset address A) Receive unnotified data size (offset address B) Receive unnotified data size copy (offset address C)	_
Test mode (See page 3 - 7.)	Test items 1. Mode setting switch test 2. LED test 3. ROM test 4. RAM test 5. Shared memory test 6. Timer test 7. Internal loopback test 8. External loopback test Added: Mode setting switch test Deleted: EEPROM checksum test Modified: LED display during testing and error	Test items 1. LED test 2. ROM test 3. RAM test 4. Shared memory test 5. EEPROM checksum test 6. Timer test 7. Internal loopback test 8. External loopback test

next page

Item	FP2 ET-LAN unit	FP3 ET-LAN unit
Error log (See page 10 - 10.)	Error codes added 8036H: MEWTOCOL transmission error Error codes deleted 8006H: OFFLINE error 8009H: Mode change error 8019H: Forced close error B001H/B002H:ONLINE/OFFLINE switching error during operation	
Ladder program	Ladder programs created using the FP3 can be used without modification.	_

Chapter 1


Unit Functions and Restrictions

1.1	Feature	es and Structu	re of ET-LAN Unit	1	- 3
	1.1.1	Features		1	- 3
	1.1.2	Unit Type		1	- 4
	1.1.3	Structure of	Network	1	- 5
	1.1.4	Connecting t	o a Network	1	- 6
	1.1.5	Connections	Between Networks	1	- 8
1.2	Overvie	ew of ET-LAN	Unit Functions	1 -	10
	1.2.1	Function Mo	del	1 -	10
	1.2.2	Communicat	ion Functions	1 -	12
			NEWTOCOL Communication	1 -	12
			Transparent Communication	1 -	14
	1.2.3	Self Diagnos	is Functions	1 -	15
1.3	Restric	tions on Units	Combination	1 -	16
	1.3.1	Restrictions	on Current Consumption	1 -	16
	1.3.2	Restrictions	on Installation Position	1 -	16
	1.3.3		on Number of Units that can be	1 -	17
	1.3.4		Based on the CPU Unit	1 -	17
1.4			to Communication Conditions	1 -	18
	1.4.1		When Using the FP2 CPU	1 -	18

1.1 Features and Structure of ET-LAN Unit

1.1.1 Features

The FP2 ET - LAN unit is an Ethernet (100BASE - TX, 10BASE - T or 10BASE5) connection interface for TCP/IP and UDP/IP for the FP2 and FP2SH series programmable controllers.

ET-LAN unit (Part No. FP2-ET1)

Supports both TCP/IP and UDP/IP

The ET-LAN supports both the TCP/IP and UDP/IP protocols, enabling communication with a broad range of computers and other devices in a network.

Simultaneous communication possible among up to eight connected connections

Communication can be carried out among up to eight connections connected to the network using only a single unit. This enables connection to multiple partner nodes.

Three types of communication interfaces supported

Three types of Ethernet communication interfaces are supported: 100BASE-TX, 10BASE-T, and 10BASE5. Any one of these interfaces may be used. Automatic switching is possible between 100BASE-TX and 10BASE-T using an auto-negotiation function, while a switch can be used to switch between 100BASE-TX/10BASE-T and 10BASE5.

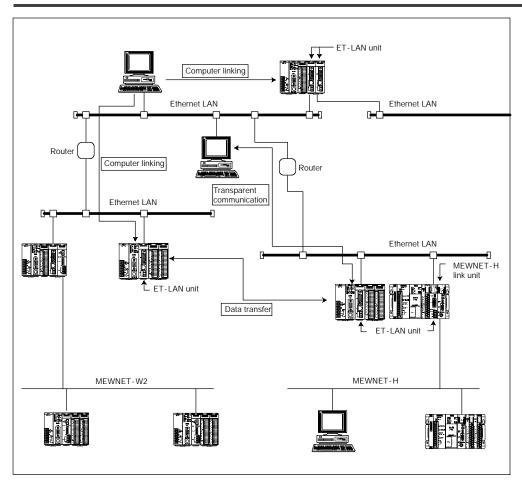
🖛 next page

Easy-to-use MEWTOCOL communication and general-purpose transparent communication supported

The MEWTOCOL communication function (computer linking and data transmission) that enables communication between personal computers, workstations, and FP series programmable controllers is supported, as well as the transparent communication function that enables communication between general-purpose devices such as computers.

A broad range of self-diagnosis functions

Errors can be handled smoothly when detected using the following self-diagnosis functions.


- A function that checks the hardware and the communication status during operation
- A function that checks the hardware and the communication status when the test mode is accessed
- An error log function that records the results of various checks

1.1.2 Unit Type

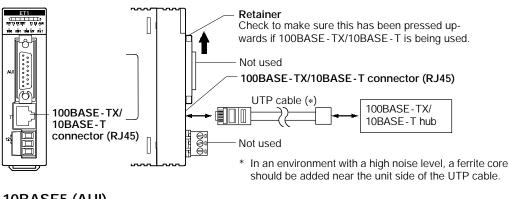
Name	Part No.
FP2 ET-LAN unit	FP2-ET1

Note

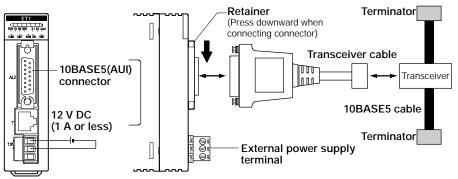
No accessories such as connectors or cables are included.

1.1.3 Structure of Network

Communication functions of ET-LAN unit


Using the ET-LAN unit to connect to an Ethernet (100BASE-TX, 10BASE-T, or 10BASE5) enables ① computer link function, ② data transfer function, and ③ transparent communication function to be carried out with other programmable controllers and computers connected to the network.

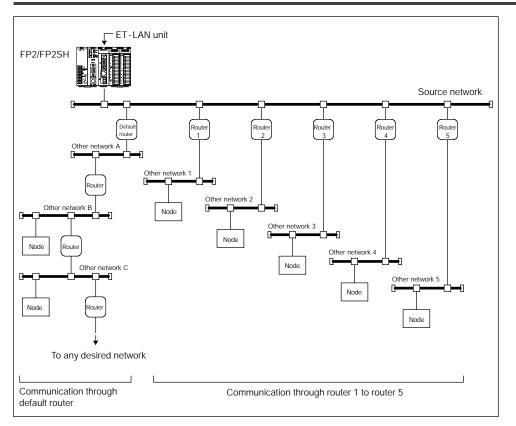
Combined use with a conventional MEWNET


The ET-LAN unit can be used in combination with another network unit such as the MEWNET-W/W2. This makes it possible to connect an existing FA network to an Ethernet LAN, using MEWNET.

1.1.4 Connecting to a Network

100BASE-TX/10BASE-T

10BASE5 (AUI)



Communications specifications

Item	100BASE-TX (*1)	10BASE-T (*1)	10BASE5
Data transfer speed	100M bits/s	10M bits/s	10M bits/s
Transfer method	Base band	Base band	Base band
Max. segment length	100 m/328.08 ft. (*2)	100 m/328.08 ft. (*2)	500 m/1,640.4 ft.
Max. distance between nodes	205 m/672.564 ft. (2 segments)	500 m/1,640.4 ft. (5 segments)	2,500 m/8,202 ft. (5 segments)
Communication cable for connection	Category 5 UTP cable	Category 3,4 and 5 UTP cable	Transceiver cable
Max. transceiver cable length	_	_	50 m/164.04 ft. (*3)
Max. number of nodes	—	—	100 nodes/segment
Node spacing	—	—	Integer multiples of 2.5

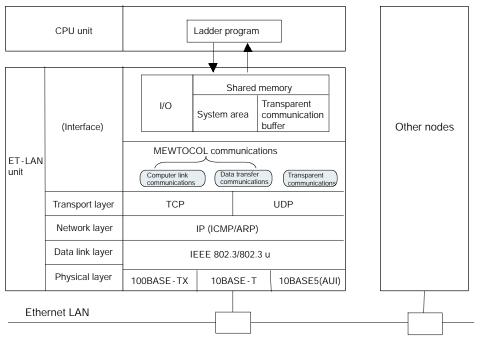
Notes

- 1) Switching between 100BASE-TX and 10BASE-T is done automatically by auto negotiation function.
- 2) The standards cite 100 m/328.084 ft. as the maximum, but noise resistance measures such as attaching a ferrite core may be necessary in some cases, depending on the usage environment. Also, if the hub is positioned close to a control board, we recommend using it at a distance of 10 m/32.808 ft. or less.
- 3) The standards cite 50 m/164.042 ft. as the maximum, but noise resistance measures such as attaching a ferrite core may be necessary in some cases, depending on the usage environment. Also, if the transceiver is positioned close to a control board, we recommend using it at a distance of 5 m/ 16.404 ft. or less.

1.1.5 Connections Between Networks

With an Ethernet, communication is possible not only between the home network and a node, but also between the nodes of other networks, using routers.

As shown in the illustration above, communication with nodes of other networks is classified as follows:


- The router is registered in advance, and communication is carried out between partner nodes of adjacent networks (other networks 1, 2, 3, etc. in the above illustration)
- Communication is carried out with the partner nodes of networks other than those shown above (other networks A, B, C, etc. in the above illustration)

Tip
When using the ET-LAN unit to carry out communication with partner nodes on another network, the router used by the ET-LAN unit should be registered.
 Up to five routers can be registered for the source network, enabling communication with any of the nodes on another adjacent network. (See other networks 1, 2, 3, etc. in the left illustration.)
 Only a single default router can be registered, and communication carried out with any desired node on any network other than those covered by ①, through the default router. (See other networks A, B, C, etc. in the left illustration.) The router may be one of the five routers specified at ①, or may be a different router.

1.2 Overview of ET-LAN Unit Functions

1.2.1 Function Model

The functions of the ET-LAN unit are shown in the diagram below. I/O and shared memory are used for the interface to the user program (CPU unit). A maximum of eight simultaneous connections are possible for each of the computer link, data transfer, and transparent communication functions.

The layers beneath the transport layer of the ET-LAN unit provide the following communication services.

TCP (Transmission Control Protocol):

TCP is a connection - based communication method which provides the virtual circuit. In the TCP communication method, since communication services including re-transmission, sequence and flow control for the communication data are provided, high communication reliability is guaranteed at the protocol level.

UDP (User Datagram Protocol):

UDP is a connectionless communication method which provides only data communication in IP units. In the UDP communication method, since no re-transmission, sequence, or flow control for the communication data is provided, support at the application level is required to guarantee communication reliability.

IP (Internet Protocol):

IP is used to transmit data in units of datagrams to partner node specified by an IP address. It provides function such as the dividing and reassembling of communication data and communication services between networks via a router.

ICMP (Internet Control Message Protocol):

ICMP is used to transmit the error message in the IP. The ET - LAN unit supports the echo replay option only to the ping command.

ARP (Address Resolution Protocol):

ARP is used to transmit the Ethernet (physical) address, which is essential to Ethernet communications, by specifying the IP address. When an ET-LAN unit accesses a station with unknown Ethernet address, you only need to specify its IP address using the broadcast method.

AUI (Attachment Unit Interface):

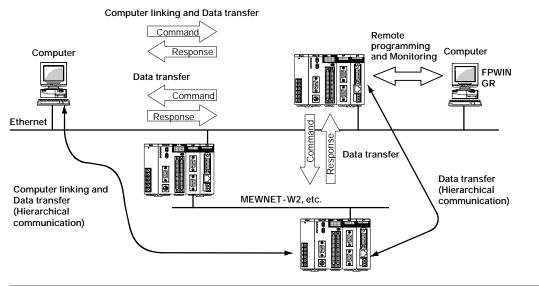
AUI is a transceiver cable that connects the ET-LAN unit with a transceiver.

1.2.2 Communication Functions

1.2.2.1 MEWTOCOL Communication Function

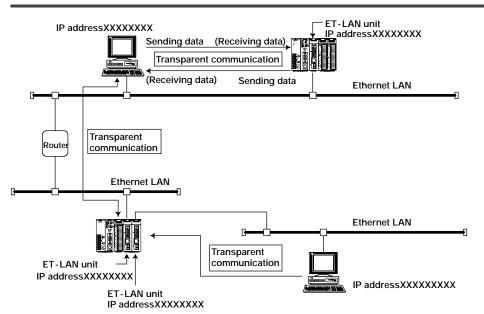
There are two MEWTOCOL communication functions: a computer link function and a data transfer function.

Computer link function: MEWTOCOL-COM (ASCII communication)

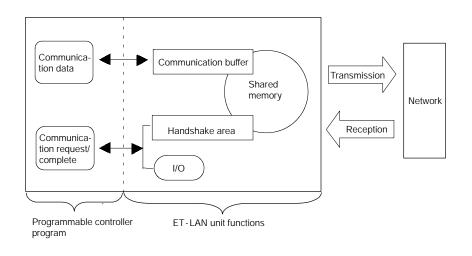

- Computer link communications can be realized by transmitting MEWTOCOL-COM data format from the computer to the programmable controller.
- The computer can read from and write to the programmable controller's I/O and registers.
- The maximum message length for one frame is 2k bytes.
- Using programming tools such as the FPWIN GR, remote programming and monitoring can be done through a LAN circuit.

Data transfer function: MEWTOCOL-DAT (binary communication)

- Execution of the data transfer instruction "F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV)" by a programmable controller program allows data transfer communications between programmable controllers and between a programmable controller and a computer. Data communication whereby the computer transfers the MEWTOCOL-DAT data format to the programmable controller is also possible.
- The computer can read from and write to the programmable controller's I/O and registers. The programmable controller can read from and write to the computer's virtual I/O and virtual registers.


A programmable controller can read from and write to the I/O and registers of another programmable controller partner node.

- The maximum amount of data that can be transferred by execution of one data transfer instruction is 1,020 words.


- Tip
- The programmable controller specifies the IP address and MEWTO-COL station number (1 to 64), and opens a connection with its communication partner's node using MEWTOCOL communication mode.
- When the programmable controller receives the MEWTOCOL command message, it returns a response message automatically, so there is no need to describe a program to generate a response.
- With the MEWTOCOL communications function and the transparent communications function, you can simultaneously use a maximum of eight connections with one ET-LAN unit.
 The computer link function and data transfer function can be executed
- simultaneously using one connection.Hierarchical communication via other MEWNET networks is also
- possible.
 - When using the data transfer function, we recommend that you use TCP/IP to guarantee communications reliability.
 - When carrying out remote programming and monitoring, the ET-LAN unit settings should be set to the MEWTOCOL communication mode and to TCP/IP communication, and the processing of the various flags should be executed through a shared memory handshake.

1.2.2.2 Transparent Communication Function

With the transparent communication function, transparent data transmission and reception between computer and programmable controller and programmable controller and programmable controller is possible.

Storage and extraction of the communication data at the programmable controller is carried out by reading from and writing to the ET-LAN unit's shared memory communication buffer. The communication requests are performed by switching on and off bits in the I/O or shared memory handshake areas.

qiT

- With transparent communication, either the computer or programmable controller specifies the IP address, and they open a mutual connection with the communication partner. After opening a connection, communication processing on the programmable controller side is done by the ladder program reading from and writing to the communication buffer of shared memory, and executing the communication requests.
- With the transparent communication function and the MEWTOCOL communications function (computer linking and data transfer), you can simultaneously use a maximum of eight connections with one ET-LAN unit.

1.2.3 Self Diagnosis Functions

Hardware and communication status check function

The ET-LAN unit is equipped with a self-diagnosis function that monitors the hardware (CPU unit and memory) and the communication status during operation. You can check the self diagnosis results using the LEDs on the unit, or by checking the contents of error log area in the shared memory.

Test mode operation function

The ET-LAN unit is equipped with a test mode operation function for checking the hardware (memory check and communications check) and for performing internal and external loop back tests. You can check the results of the test mode operation function using the LEDs on the unit, or by checking the contents of error log area in the shared memory.

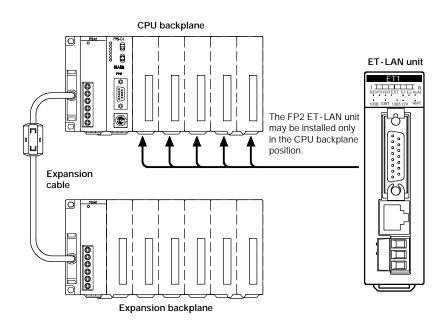
Error log function

The ET-LAN unit is equipped with an error log function that records hardware and communications faults in the order that they occur. You can read out the contents of error log from the error log area in the shared memory.

1.3 Restrictions on Units Combination

1.3 Restrictions on Units Combination

1.3.1 Restrictions on Current Consumption


The internal current consumption (at 5 V DC power supply) for the FP2 ET-LAN unit is 670 mA. When the system is configured, the other units being used should be taken into consideration, and a power supply unit with a sufficient capacity should be used.

Name	Part number	Current consumption at 5 V DC
FP2 ET-LAN unit	FP2-ET1	670 mA or less

For information on the internal current consumption of other units, see the "FP2 Hardware Manual" and the manuals provided with the other units.

1.3.2 Restrictions on Installation Position

The FP2 ET-LAN unit may be installed only in the CPU backplane position. However, the units should be installed to the right of the power supply unit and CPU unit. It cannot be installed in an expansion backplane.

1.3 Restrictions on Units Combination

1.3.3 Restrictions on Number of Units that can be Installed

The following restrictions apply when installing the ET-LAN unit in a programmable controller.

Unit name	Restrictions on number of units		
	For FP2 CPU unit	For FP2SH CPU unit	
ET - LAN unit Multi - wire link unit (MEWNET - W2 mode)	Up to 3 units (up to 2 units for link between PLCs)	Up to 8 units (up to 2 units for link between PLCs)	

Note

If the hierarchical link function is being used through the MEWNET and the communication path includes an MEWNET-W, the maximum number of units that can be installed is two, for the units noted below.

- ET-LAN unit
- Multi-wire link unit
- Computer communication unit

1.3.4 Restrictions Based on the CPU Unit Version

The following usage restrictions apply to the CPU unit version.

- FP2 CPU unit - Ver. 1.08 or higher
- FP2SH CPU unit - Ver. 1.02 or higher

1.3 Restrictions on Units Combination

1.4 Restrictions Relating to Communication Conditions and Functions

1.4.1 Precautions When Using the FP2 CPU Unit

If the codes "MC, MD, MG" for monitor commands are used among the commands sent from the host computer, commands being sent from multiple computers will prevent data from being read and written correctly.

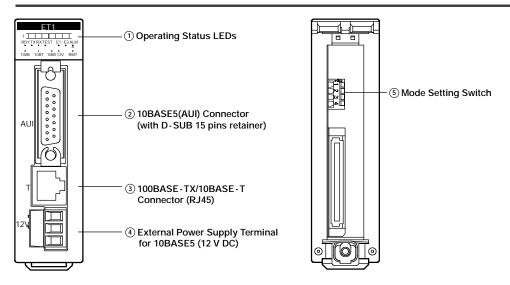
Note

If monitor commands are sent from multiple computers, registered data will overwrite previously registered data, starting from the latest item, so that different data will end up being monitored.

Tip

- Monitor commands are used to execute monitoring after the contacts and data to be monitored have been registered on the PLC side.
- If using the FP2SH CPU unit, the above restrictions apply for up to 10 connections.

Chapter 2


Names and Functions of Parts

2.1	2.1 Names and Functions of Parts		2 - 3
	2.1.1	Names and Functions of Parts	2 - 3
	2.1.2	Operating Status LEDs	2 - 4
	2.1.3	Mode Setting Switch	2 - 5
2.2	Connec	tor Pin Layout	2 - 6
	2.2.1	10BASE5(AUI) Connector (with D-SUB 15 pins retainer)	2 - 6
	2.2.2	100BASE - TX/10BASE - T Connector (RJ45)	2 - 6
	2.2.3	External Power Supply Terminal for 10BASE (12 V DC)	

2.1 Names and Functions of Parts

2.1 Names and Functions of Parts

2.1.1 Names and Functions of Parts

1 Operating Status LEDs

These display the operating status of the unit, such as connection and communication conditions, and error statuses.

2 10BASE5(AUI) Connector

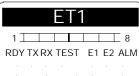
When an Ethernet (10BASE5) is being used, this connector is used to connect the ET-LAN unit and the transceiver, using a transceiver cable.

3 100BASE-TX/10BASE-T Connector (RJ45)

When an Ethernet (100BASE - TX, 10BASE - T) is being used, this connector is used to connect the ET - LAN unit and the hub, using a UTP cable.

(4) External Power Supply Terminal for 10BASE5 (12 V DC)

When an Ethernet (10BASE5) is being used, this terminal supplies power to the transceiver.

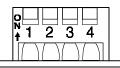

When an Ethernet (100BASE-TX, 10BASE-T) is being used, this terminal is not used.

5 Mode Setting Switch

These are used to select the communication interface and the test mode for the Ethernet.

2.1 Names and Functions of Parts

2.1.2 Operating Status LEDs



100B 10 BT 10 B5 12 V RMT

LED	On	Flashing	Off
1	Connection 1 connected	Connection 1 fault	Connection 1 not connected
2	Connection 2 connected	Connection 2 fault	Connection 2 not connected
3	Connection 3 connected	Connection 3 fault	Connection 3 not connected
4	Connection 4 connected	Connection 4 fault	Connection 4 not connected
5	Connection 5 connected	Connection 5 fault	Connection 5 not connected
6	Connection 6 connected	Connection 6 fault	Connection 6 not connected
7	Connection 7 connected	Connection 7 fault	Connection 7 not connected
8	Connection 8 connected	Connection 8 fault	Connection 8 not connected
RDY	Initialization complete (communication ready status)	-	Initialization not complete
тх	Transmitting	-	Not transmitting
RX	Receiving	-	Not receiving
TEST	Test mode	_	Normal mode
E1	Initialization processing error	Recovery possible error	Normal operation
E2	System error	Warning error	
ALM	CPU fault	-	Unit normal
100B	100BASE-TX operation	-	Other mode in operation
10BT	10BASE - T operation	—	Other mode in operation
10B5	10BASE5 operation	—	Other mode in operation
12 V	12 V power supply on	_	12 V power supply off
RMT	Reserved	Reserved	Reserved

2.1 Names and Functions of Parts

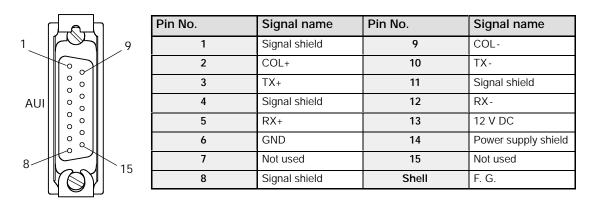
2.1.3 Mode Setting Switch

Factory settings (All off position)

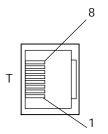
Switch No.	Off	On
1	100BASE-TX/10BASE-T (*1)	10BASE5
2	Reserved	Reserved
3	Normal mode	Test mode
4	Test mode 2 (*2)	Test mode 1 (*2)

*1 Switching between 100BASE-TX and 10BASE-T is done automatically by auto negotiation function.

*2 Invalid when the switch 3 is off.

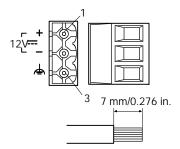

Tip

The settings of the mode setting switches become effective at the point when the power supply is turned on.


2.2 Connector Pin Layout

2.2 Connector Pin Layout

2.2.1 10BASE5(AUI) Connector (with D-SUB 15 pins retainer)



2.2.2 100BASE - TX/10BASE - T Connector (RJ45)

Pin No.	Signal name
1	TX+
2	TX-
3	RX+
4	Not used
5	Not used
6	RX-
7	Not used
8	Not used

2.2.3 External Power Supply Terminal for 10BASE5 (12 V DC)

Pin No.	Signal name
1	12 V DC
2	GND
3	F.G.

Notes

- F.G. pin connects to the external metal shell of the 10BASE5 (AUI), 100BASE-TX/10BASE-T connectors and F. G. pin of the power supply unit.
- Pins should be tightened firmly, to a tightening torque of 0.5 to 0.6 N · m.
- The power supply cable should be 0.5 to 2.5 mm² (AWG20 to 12), and the length of the stripped wire should be 7 mm/0.276 in.

2.2 Connector Pin Layout

Connection for LAN Cable

3.1	Precautions Concerning Installation					
3.2	Connection for LAN Cable					
	3.2.1	100BASE-TX and 10BASE-T Connections	3 - 5			
	3.2.2	10BASE5(AUI) Connections	3 - 6			
3.3	Test Mo	de	3 - 7			
	3.3.1	Types and Contents of Test Modes	3 - 7			
	3.3.2	Running Test Modes	3 - 8			

3.1 Precautions Concerning Installation

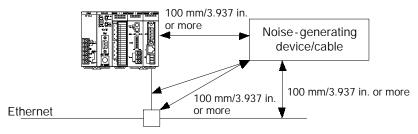
3.1 Precautions Concerning Installation

Noise resistance

The Ethernet is a network used in offices and buildings, where there is comparatively little noise. It does not have a higher resistance to noise than ordinary FA application networks. Consequently, caution is required when installing the transceiver and hub, and when laying cables.

Guidelines to noise generation

If any of the following are occurring, there is a danger that external noise is affecting the communication circuit.


- The RX LED on the ET-LAN unit is lighted or flashing, whether or not communication is taking place at the moment.
 Cause: External noise from the communication circuit is penetrating the ET-LAN unit and is being interpreted as a reception signal.
- An error subsequent to error code 8020H has occurred. Cause: External noise from the communication circuit is penetrating the ET-LAN unit and is causing a communication error.
- An error subsequent to error code A001H has occurred.
 Cause: External noise from the communication circuit is penetrating the ET-LAN unit and is causing a communication error.

Confirm the following items and take any necessary corrective action.

- Check to see if the RX LED lights or flashes, or if a communication error is occurring, in synch with the operation of the device.
- If either of these is happening in synch with the operation of the device, take whatever measures are necessary to suppress the generation of noise from the device side.

Measures that can be taken in the installation environment

The ET-LAN unit, transceiver, hub, and communication cables should be installed as far as possible from high-voltage wires, high-voltage equipment, power lines, power equipment, equipment that generates strong breaker surges, and the wiring for any of this equipment. At least 100 mm/3.937 in. of clearance should be allowed when installing the equipment.

3.1 Precautions Concerning Installation

If it is impossible to avoid installing the equipment or cables near noise-generating equipment, the following measures should be taken.

- Place the programmable controller, transceiver, and hub inside metal panels.
- Place communication cables inside metal ducts.
- Attach a ferrite core near the ET-LAN unit of the communication cable.
- If using an external power supply terminal (12 V DC) for the ET-LAN unit, attach a ferrite core to the power supply cable.
- Attach a ferrite core to the power supply cable of the programmable controller (example of ferrite core: RFC-10 by Kitagawa Industrial Co., Ltd.).

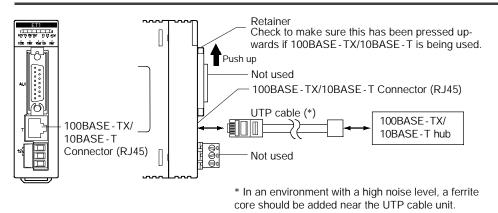
An alternative measure is to use an optical transceiver close to the noise-generating section of the equipment and install an optical fiber to keep the noise from affecting nearby equipment. (This is also effective as a lightning shield for outdoor wiring.)

Caution: Metal panels and metal ducts should be grounded at a grounding resistance of 100 Ω or less. Also, metal panels and metal ducts should be insulated so that they do not come in contact with communication devices or cables.

Note

Installation of LAN cables and devices A specialist should be consulted concerning construction work such as the installation of 100BASE-TX and 10BASE-T hubs, the installation of the 10BASE5 (AUI) transceiver, and laying of cables. If this construction work is done incorrectly, it can adversely affect the entire network, and can cause accidents.

Taking corrective measures through the application


Communication errors occurring in the ET-LAN unit can be minimized by taking the steps outlined below. Corrective measures should also be taken on the computer side, such as increasing the number of times that data is sent.

- Increasing the number of times data is sent Adjust the "TCP ULP (packet existence time)" and "TCP re-send timer value" parameters in the initial information setting area, to increase the number of times that data is sent. (See page 5 - 9.) When using UDP/IP, the above settings are invalid, so data should be re-sent through the application.
- Increasing the timeout judgment time When executing data transmission commands (SEND/RECV), increase the value set for the CPU unit system register No. 32. (See page 13 - 24.)

3.2 Connection for LAN Cable

3.2 Connection for LAN Cable

3.2.1 100BASE-TX and 10BASE-T Connections

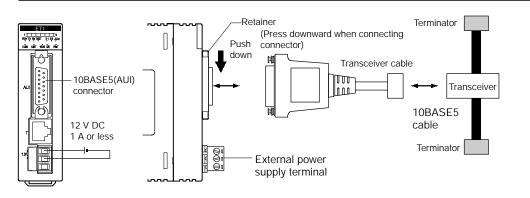
100BASE-TX and 10BASE-T Connections

Connect the UTP cable to the 100BASE - TX/10BASE - T connector (RJ45) on the front panel of the ET - LAN unit.

UTP Cable

- Use Category 5 UTP cable. According to the ratings, Category 3 or better cable can be used with 10BASE-T, but we recommend that you use Category 5 UTP cable, which provides higher reliability.
- According to the ratings, UTP cable can be up to 100 m/328.08 ft. in length, but considering noise resistance, we recommend that you keep the cable under 10 m/32.81 ft. in length.
- We recommend that you use shielded cable in environments where electrical noise is likely to be generated.

External Power Supply Terminal


The external power supply terminal is not used when 100BASE - TX and 10BASE - T are being used.

Earth

- The F.G. pin of the external power supply terminal on the front of the unit is connected to the outer metallic shell of the 100BASE-TX/10BASE-T connector (RJ45), or the outer metallic shell of the 10BASE5 (AUI) connector. These are also connected to the F. G. terminal of the power supply unit through the backplane.
- In an environment with a high noise level, the F. G. terminal should be grounded at a grounding resistance of 100 Ω or less.

3.2 Connection for LAN Cable

3.2.2 10BASE5(AUI) Connections

10BASE5(AUI) Connections

- Connect the transceiver cable to the 10BASE5 (AUI) connecter (with D-SUB 15 pins retainer) on the front panel of the unit. After you connect it, push down the retainer to fasten the cable.
- Be certain to install terminators on the ends of the LAN circuit.

Transceiver and Transceiver Cable

- The transceiver that you use must comply with IEEE802.3.
- According to the ratings, transceiver cable can be up to 50 m/164.04 ft. in length, but considering noise resistance, we recommend that you keep the cable under 5 m/16.4 ft. in length.
- We recommend that you use a high-reliability connector type for the transceiver.

External Power Supply Terminal Connections

- Connect the external power supply terminal on the front panel of the unit to 12 V DC power supply to power the transceiver cable.
- Note that the internal voltage drop is 1 V (max.).

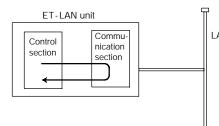
Earth

- The F.G. pin of the external power supply terminal on the front of the unit is connected to the outer metallic shell of the 100BASE-TX/10BASE-T connector (RJ45), or the outer metallic shell of the 10BASE5 (AUI) connector. These are also connected to the F. G. terminal of the power supply unit through the backplane.
- In an environment with a high noise level, the F. G. terminal should be grounded at a grounding resistance of 100 Ω or less.

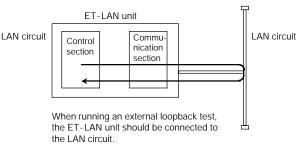
3.3 Test Mode

The ET-LAN unit has a test mode function that checks whether the unit is operating properly after it has been installed.

3.3.1 Types and Contents of Test Modes


Contents of Test Mode

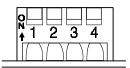
Item	Test mode 1	Test mode 2
Mode setting switch test	Available	Available
LED test	Available	Available
ROM test	Available	Available
RAM test	Available	Available
Shared memory test	Available	Available
Timer test	Available	Available
Internal loopback test	Available	Available
External loopback test	Not available	Available


Loopback Test

Running a loopback test checks the functions of the control section and communication section in the unit.

<Internal loopback test>

<External loopback test>


Note

If you conduct an external loopback test when other nodes are communicating on the LAN, there is a chance that an error may occur. Either take steps to ensure that other nodes will not communicate or disconnect the other nodes before performing an external loopback test. 3.3 Test Mode

3.3.2 Running Test Modes

How the test modes are run

Set the mode setting switches on the rear of the ET-LAN unit to the settings indicated in the table below, and then turn on the power supply to the programmable controller. When this has been done, either test mode 1 or test mode 2 can be run. To exit a test mode, turn off the power supply to the programmable controller.

Factory settings (All off position)

Switch No.	Off	On
1	100BASE-TX/10BASE-T (*1)	10BASE5
2	Reserved	Reserved
3	Normal mode	Test mode
4	Test mode 2 (*2)	Test mode 1 (*2)

*1 Switching between 100BASE-TX and 10BASE-T is done automatically by auto negotiation function.

*2 Invalid when the switch 3 is off.

Description of Test Content

Item	tem Description		Confirmation method			
		LED disp	LED display		Error code	
			When testing	When error occurs	when error occurs*	
Mode setting switch test			ights Visually check whether the LEDs light		_	
LED test All LEDs go off, then on for one second. After this, the LEDs go off, and each LED goes on for 0.5 seconds then off in the following or- der: C1, C2, C3, C4, C5, C6, C7, C8, RDY, TEST, E1, E2, ALM, 100B, 10BT, 10B5 and RMT		Visually check whether the LEDs light				
ROM test	DM test Checks whether or not the result of 1 - byte binary addition of the entire ROM area is 0. The checksum value is set so that the result of the last addition of the ROM is 0.		C1	C1 E1	9010H	
RAM test Writes AAH to every byte in RAM area, and reads every byte to check that the value matches AAH.			C1 to 2	C1 to 2 E1	9011H	
Shared memory test			C1 to 3	C1 to 3 E1	9012H	
Timer test	Timer test Check whether or not the timer generates an interrupt.		C1 to 4	C1 to 4 E1	9016H	
Internal loopback test			C1 to 5	C1 to 5 E1	9014H	
External loopback test	Performs an external communication loopback test.		C1 to 5	C1 to 5 E1	9015H	
Test complete	C1 to C8 LE mal complet		e TEST LE	D light at nor-		

* The error codes are stored in the error log area.

Action to Take in Response to Errors

Item	Response action
External loopback test	Check the communication circuit connection and after confirming that there are no other nodes communicating, perform the test again.
Other tests	There may be a hardware problem. Switch the power off and on again, and run the test again. If the error persists, please contact your dealer.

3.3 Test Mode

Confirming the Design Contents

4.1	Addres	s Confirmation	4 - 3
	4.1.1	IP Address Confirmation	4 - 3
	4.1.2	MEWTOCOL Station Number Confirmation	4 - 3
4.2	I/O Allo	ocations	4 - 4
	4.2.1	Confirmation of I/O Allocations	4 - 4
	4.2.2	Confirmation of Route Numbers	4 - 5
4.3		nation of the Contents of the I Memory	4 - 6
	4.3.1	Configuration of the Shared Memory	4 - 6
	4.3.2	The Roles Played by the Various Areas	4 - 7
4.4	Handst	hake Method	4 - 9
	4.4.1	Handshake Method	4 - 9
	4.4.2	Using the I/O for the Handshake	4 - 11
	4.4.3	Using the Shared Memory for the Handshake 4	1 - 13

4.1 Address Confirmation

4.1 Address Confirmation

4.1.1 IP Address Confirmation

IP address confirmation

- An individual IP address is necessary in order to connect the ET-LAN unit to an Ethernet LAN.
- Confirm the IP address with the person running the network system.
- If two or more ET-LAN units have been installed on one backplane, individual addresses should be allocated to each one.

Ethernet address confirmation

- Individual Ethernet addresses for each unit are written to the internal EEPROM, and are also noted on the plate affixed to the side of the unit.
- This value can also be confirmed by checking the initial information notified area in the shared memory.

Router address confirmation

- If the ET-LAN is communicating with another node or nodes through a router, the router IP address and the sub-network address should be confirmed.
- This is not necessary if communication is not being carried out with nodes of other networks through a router.

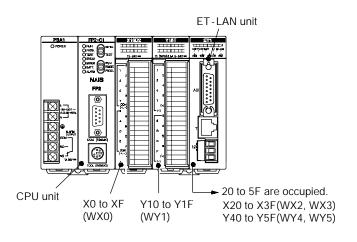
Tip

If the network to which the ET-LAN unit is connected is completely independent, any IP address except for 0000 0000H and FFFF FFFFH may be allocated.

4.1.2 MEWTOCOL Station Number Confirmation

MEWTOCOL Station Number Confirmation

- This is used when communication destination nodes are specified with the computer link and data send functions.
- MEWTOCOL station numbers should be set in such a way that they do not overlap with the addresses of other communication destination nodes.
- Station numbers may be allocated within a range of 1 to 64. Allocating "0" will cause an error.


4.2 I/O Allocations

4.2 I/O Allocations

4.2.1 Confirmation of I/O Allocations

Allocating the ET-LAN unit

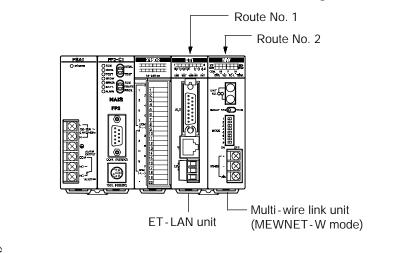
- A total of 32 inputs and 32 outputs can be allocated for the ET-LAN unit.
- If the I/O is not being used for the handshake, the programming tools can be used to specify [0SE], to set the number of occupied points to 0.

Notes

- If "I/O installation allocation" and "Auto allocation" are used, 16 points will be allocated automatically to each of the empty slots.
- If a dual-module type of CPU unit is being used, the I/O area occupied by the unit incorporated into the CPU unit should also be confirmed.

For information on I/O allocations, please refer to the "FP2 Hardware Manual".

4.2.2 Confirmation of Route Numbers


When MEWTOCOL communication is being used, if communication is being carried out with a node on a different hierarchical level, the route number is used to specify that route. These numbers are not necessary if the hierarchy link function is not being used.

If multiple link - related units have been installed, they are numbered "route no. 1", "route no. 2", "route no. 3", etc., in sequence, with route no. 1 being the one closest to the CPU.

This "route" is not included for I/O units and advanced-function units other than link-related units.

Example:

When one Multi-wire link unit is being used at the same time

Tip

If any of the following units have also been installed, a "route no." is specified that also includes these units.

- Computer communication unit (CCU)
- Multi-wire link unit (MEWNET-W mode)
- Multi-wire link unit (MEWNET-W2 mode)

4.3 Confirmation of the Contents of the Shared Memory

4.3 Confirmation of the Contents of the Shared Memory

4.3.1 Configuration of the Shared Memory

Shared memory allocations

The shared memory in the ET-LAN unit consists of the following areas.

O1FFH 0200HO1FFH 0200HReservedReserved (512 words)Reserved (32 words)00H area (48 words)02 02 00H0400H01H0000HUser system area (512 words)Connection information setting area (128 words)00H02 02 00H0400H01H0000HReserved (9k words)Reserved (9k words)00H02 02 00H27FFH09H03FFHReserved (9k words)Initialization information notified area (128 words)00H02 02 00H2800H0AH0000HTransparent (6k words)Transparent (6k words)00H03 00H3FFFH0FH03FFHTransparent (6k words)Receive buffer for Connection 1 (1k words)0AH00 03 03 00H3FFFH0FH03FFHTransparent (6k words)Transmission buffer for Connection 1 (1k words)0AH00 03 03 00H3FFFH0FH03FFHReceive buffer for Connection 2 (1k words)0AH00 03 03 0CH3FFFH0FH03FFH0AH00 03 030AH00 03 03 00H3FFFH0FH03FFH0AH00 03 030AH00 03 03 00H3FFFH0FH03FFH03FFH0AH00 03 03 00H03FFH3FFFH0FH03FFH03FFH03FFH00H3FFFH0FH03FFH03FFH03FFH3FFFH0FH03FFH03FFH03FFH3FFFH<	Absolute address	Bank No.	Address				Bank No.	Address
01FFH 00H 01FFH 00H 0200H 03FFH 00H 03FFH 000H 03FFH 0400H 01H 0000H 03FFH 00H 02 0400H 01H 0000H 03FFH 00H 02 227FFH 09H 03FFH 03FFH 00H 02 2800H 0AH 0000H 00H 02 1 11itialization information notified area (18 words) 00H 02 2800H 0AH 0000H 00H 02 1 11itialization information notified area (18 words) 00H 02 1 0AH 0000H 00H 02 1 0AH 0000H 00H 02 1 1 1 00H 02 1 0AH 000H 03 03 1 1 1 03FFH 00H 03 2800H 0AH 000H 03 03 00H 03 3FFH 0FH 03FH 03FH 03 03 04H <td></td> <td></td> <td></td> <td>Reserved</td> <td>] /</td> <td></td> <td>00H</td> <td>0200H</td>				Reserved] /		00H	0200H
03FFH 00H 03FFH 00H 03FFH 000H 03FFH 02 0400H 01H 0000H 01H 0000H 01H 0000H 02FH 27FFH 09H 03FFH 03FFH 02 00H 02 2800H 0AH 0000H 03FFH 00H 02 02 02 2800H 0AH 0000H 03FFH 00H 03 00H 03 2800H 0AH 0000H 03FFH 00H 03 00H 03 2800H 0AH 0000H 03FFH 00H 03 03 00H 03 2800H 0AH 0000H 00H 03 03 01H 00 03 03 00H 03 3FFFH 0FH 03FFH Transparent communication buffer area (6k words) 03 03 02 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 04H 00 03 03 03 <t< td=""><td></td><td></td><td></td><td></td><td>\checkmark</td><td>area (48 words)</td><td></td><td>022FH</td></t<>					\checkmark	area (48 words)		022FH
O3TH1 O0H O3TH1 O0H O3TH1 O0H O2 O400H 01H 000H O0H O2 O2 O0H O2 Connection information notified area (128 words) Initialization information notified area (128 words) O0H O2 27FFH O9H O3FFH O0OH O0H O2 2800H OAH O0OOH OH O2 2800H OAH O0OOH OH O2 Transparent communication buffer area (6k words) Transmission buffer for Connection 1 (1k words) OH O3 3FFFH OFH O3FFH OAH O0OH OAH O0 3FFFH OFH O3FFH Transparent (6k words) Transmission buffer for Connection 1 (1k words) OAH O3 3FFFH OFH O3FFH OBH O0 O3 O3 O3 3FFFH OFH O3FFH OFH O3FFH OAH O3 OAH O3 3FFFH OFH O3FFH OAH O3FFH OAH O3 OAH O3 3FFFH							00H	0230H 024FH
27FFH 09H 03FFH 2800H 0AH 0000H 2800H 0AH 0000H 2800H 0AH 0000H Transparent communication buffer area (6k words) 0AH 00H 03 3FFFH 0FH 03FFH 0AH 000H 03 3FFFH 0FH 03FFH 0AH 000H 03 Beceive buffer for Connection 1 (1k words) 0AH 00 03 03 3FFFH 0FH 03FFH 0AH 00 03 03 Beceive buffer for Connection 1 (1k words) 0AH 00 03 0BH 00 0BH 00 03 03 0BH 03 03 03 3FFFH 0FH 03FFH 03FFH 06H 03 03 06H 03 3FFFH 0FH 03FFH 03FFH 06H 03 03 06H 03 3FFFH 0FH 03FFH 03FFH 06H 03 03 06H 03 0FH 0FH 03FFH 06H <td></td> <td></td> <td></td> <td>, ,</td> <td>1</td> <td>· · · · ·</td> <td>00H</td> <td>024111 0250H</td>				, ,	1	· · · · ·	00H	024111 0250H
27FFH09H03FFHReserved (9k words)0227FFH09H03FFH00H032800H0AH0000H100H032800H0AH0000H100H0312800H0AH0000H100H0312800H0AH0000H100H0312800H0AH0000H100H0312800H0AH0000H0300H0312800H0AH000H030300H12800H0AH000H030300H12800H0AH00H030300H12800H0AH03FFH030300H3FFFH0FH03FFH030308H003FFFH0FH03FFH0302H03033FFFH0FH03FFH0302H03033FFFH0FH03FFH0302H03033FFFH0FH03FFH030302H033FFFH0FH03FFH030302H033FFFH0FH03FFH030302H033FFFH0FH03FFH030302H033FFFH0FH03FFH030302H033FFFH0FH03FFH030303033FFFH0FH03FFH030303033FFFH	040011	0111	000011		Ν		0011	025011 02CFH
27FFH09H03FFHReserved (9k words)0227FFH09H03FFH00H032800H0AH0000H100H032800H0AH0000H100H0312800H0AH0000H100H0312800H0AH0000H100H0312800H0AH0000H100H0312800H0AH0000H0300H0312800H0AH000H030300H12800H0AH000H030300H12800H0AH00H030300H12800H0AH03FFH030300H3FFFH0FH03FFH030308H003FFFH0FH03FFH0302H03033FFFH0FH03FFH0302H03033FFFH0FH03FFH0302H03033FFFH0FH03FFH030302H033FFFH0FH03FFH030302H033FFFH0FH03FFH030302H033FFFH0FH03FFH030302H033FFFH0FH03FFH030302H033FFFH0FH03FFH030303033FFFH0FH03FFH030303033FFFH						Initialization information potified	00H	02D0H
27FFH 09H 03FFH 2800H 0AH 0000H 2800H 0AH 0000H Transparent communication buffer area (6k words) 0AH 00H 03 3FFFH 0FH 03FFH 0AH 000H 03 Receive buffer for Connection 1 (1k words) 0AH 00H 03 0BH 00 03 0BH 00 0Ch 03 0BH 00 03 0Ch 03 0Ch 03 0BH 00 0BH 00 03 0CH 03 0BH 00 0Ch 03 0CH 03 0CH 03 0CH 03 0BH 00 03 0CH 03 0CH 00 03 0CH 00 03 0CH 03 0CH 00 03 0DH 00 03 0CH 00 03 0CH 00 03 0DH 00 03 0CH 00 03 0CH 00 03 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0011</td><td>02DFH</td></td<>							0011	02DFH
27FFH 09H 03FFH 2800H 0AH 0000H 2800H 0AH 0000H Transparent communication buffer area (6k words) 0AH 00H 03 3FFFH 0FH 03FFH 0AH 00H 03 Receive buffer for Connection 1 (1k words) 0AH 00H 03 0BH 00 03 0BH 00 0CH 00 03 0BH 00 0CH 00 03 0CH 03 0BH 00 03 0CH 03 0CH 00 03 0CH 00 0CH 00 03 0DH 00 0CH 00 03 0CH 03 0DH 00 03 0DH 00 0DH 00 <t< td=""><td></td><td></td><td></td><td>(9K WOIUS)</td><td></td><td>Connection information notified</td><td>00H</td><td>02E0H</td></t<>				(9K WOIUS)		Connection information notified	00H	02E0H
27FFH 09H 03FFH 2800H 0AH 0000H 3800H 0AH 0000H 12800H 0AH 0000H 12800H 0AH 0000H 12800H 0AH 0000H 12800H 0AH 000H 03 12800H 0AH 000H 03 12800H 0AH 000H 03 12800H 0AH 00H 03 031 0AH 00 12800H 0FH 03FFH 3FFFH 0FH<								035FH
2800H 0AH 0000H (32 words) 03 Error log area 00H 03 (128 words) 00H 03 Beceive buffer for Connection 1 0AH 00 (128 words) 0AH 00 Beceive buffer for Connection 1 0AH 00 (1k words) 0BH 00 Beceive buffer for Connection 1 0AH 00 0BH 00 03 0CH 00 03 0CH 00 03 0CH 00 00 0DH 00 00	27FFH	09H	03FFH			Handshake area	00H	0360H
Transparent communication buffer area (6k words) Transmission buffer for Connection 1 (1k words) 0AH 00 3FFFH 0FH 03FFH 03FFH 0AH 00 Receive buffer for Connection 1 (1k words) 03H 00 Receive buffer for Connection 2 (1k words) 03H 00 Receive buffer for Connection 2 (1k words) 03H 00 Receive buffer for Connection 2 (1k words) 03H 00 Receive buffer for Connection 2 (1k words) 03H 00 0DH 00 03 0DH 00 <t< td=""><td>2800H</td><td>0AH</td><td>0000H</td><td></td><td>N</td><td></td><td></td><td>037FH</td></t<>	2800H	0AH	0000H		N			037FH
3FFFH 0FH 03FFH 3FFFH 0FH 03FFH Charlen area (6k words) Image: Constraint communication 03 Constraint communication 03 Receive buffer for Connection 1 03 (128 words) 03 Receive buffer for Connection 1 03 0BH 00 0CH 00 0CH 00 0CH 00 0DH 00 0DH 00 0DH 00 0DH 00 0DH 00 0DH 00 0EH 00 <td></td> <td></td> <td></td> <td></td> <td>\setminus</td> <td>, ,</td> <td>00H</td> <td>0380H</td>					$ \setminus $, ,	00H	0380H
Transparent communication buffer area (6k words) Receive buffer for Connection 1 (1k words) 0AH 00 3FFFH 0FH 03FFH 0BH 00 Receive buffer for Connection 1 (1k words) 03 0BH 00 Receive buffer for Connection 1 (1k words) 03 0BH 00 Transmission buffer for Connection 2 (1k words) 03 0CH 00 Receive buffer for Connection 2 (1k words) 03 0DH 00 Receive buffer for Connection 3 (1k words) 03 0EH 00					$ \langle \rangle$			03FFH
SEFFH 0FH 03FFH Receive buffer for Connection 1 (1k words) 0AH 00 03 Receive buffer for Connection 1 (1k words) 03 Receive buffer for Connection 1 (1k words) 03 Receive buffer for Connection 1 (1k words) 03 OBH 00 Receive buffer for Connection 2 (1k words) 03 OCH 00 Receive buffer for Connection 2 (1k words) 03 ODH 00 Receive buffer for Connection 3 (1k words) 03 ODH 00 03 00H 00H 00 00H <					$ \rangle$			031111
3FFFH 0FH 03FFH 3FFFH 0FH 03FFH Receive buffer for Connection 1 (1k words) 03 0CH 00 0CH 00 0CH 00 0DH 00 0EH 00 0EH 00 03 0EH 03 03				communication buffer area			0AH	0000H 03FFH
3FFFH 0FH 03FFH 3FFFH 0FH 03FFH Receive buffer for Connection 1 (1k words) 03 0CH 00 0CH 00 0Transmission buffer for Connection 2 (1k words) 03 0DH 00 0DH 00 0EH 00 0BH 00 0CH 00 0DH 00 0CH 00 0DH 00 0EH 00 0EH 00 03 03							0BH	0000H
3FFFH 0FH 03FFH 0CH 00 Receive buffer for Connection 2 (1k words) 03 01 00 Transmission buffer for Connection 2 (1k words) 03 00H 00 Receive buffer for Connection 2 (1k words) 03 01H 00 Receive buffer for Connection 3 (1k words) 03 01H 00 00H 00 03 01H 00 00H 00 03 03 03H 03H							ODIT	03FFH
Receive buffer for Connection 2 (1k words) 03 Transmission buffer for Connection 2 (1k words) 00H Receive buffer for Connection 3 (1k words) 03	3EEEH	0FH	03EEH				0CH	0000H
Transmission buffer for Connection 2 (1k words) 0DH 00 Receive buffer for Connection 3 (1k words) 0EH 00	011111				1		0011	03FFH
Transmission buffer for Connection 2 (1k words) 03 Receive buffer for Connection 3 (1k words) 0EH 00							0DH	0000H
Receive buffer for Connection 3 (1k words) 03						Transmission buffer for Connection 2 (1k words)	0DIT	03FFH
Receive buffer for Connection 3 (1k words) 03					\		OFU	0000H
							UEH	0000H 03FFH
					/			03FFH 0000H
Transmission buffer for Connection 3 (1k words)							UFH	0000H 03FFH

Notes

- Addresses for the above shared memory are in word (16-bit) units.
- The allocations (connections 1 to 3) for the transparent communication buffer area shown above show the statuses in effect when the unit is shipped from the factory. The first addresses and sizes of the transmission and receiving buffers for connections 1 to 8 can be changed to any desired values in the transparent communication buffer area (6k words) by changing the contents of the initialization information settings.

4.3.2 The Roles Played by the Various Areas

Initialization information setting area Addresses 200H to 22FH

- These are used in the initialization processing of the ET-LAN unit.
- These specify basic information such as the addresses and node numbers of source stations, and the re-send setting time for the TCP.
- These are also used to specify the area settings for the communication buffer used for transparent communication.

Routing information setting area Addresses 230H to 24FH

- These are used in the initialization processing of the ET-LAN unit.
- These are specified when communication is being carried out from the ET-LAN unit with a node on an Ethernet, through a router.
- These are used to specify router IP addresses and sub-network masks.
- These do not need to be set if communication is being carried out only on the network to which the source station is connected.

Connection information setting area Addresses 250H to 2CFH

- These are used for open processing of the ET-LAN unit.
- These specify TCP and UDP settings, the method used for opening the ET-LAN unit, and the IP addresses and port numbers of the node at the other end.
- These can be specified separately for each connection, and are divided into eight blocks.

Initialization information notified area Addresses 2D0H to 2DFH

- When the initialization processing for the ET-LAN unit has been completed successfully, the specified conditions are stored at these addresses.
- The contents stored here include source node IP addresses, MEWTOCOL station numbers, and other information.
- If the initialization processing was not completed successfully, the error code is stored here.

Connection information notified area Addresses 2E0H to 35FH

- When the open processing for the ET-LAN unit has been completed successfully, the specified conditions are stored at these addresses.
- The contents stored here include IP addresses and port numbers for the destination nodes, and other information.
- If the open processing was not completed successfully, the error code is stored here.

🖛 next page

4.3 Confirmation of the Contents of the Shared Memory

Handshake area Addresses 360H to 37FH

- This is the area in which the handshake takes place between the CPU unit and the ET-LAN unit.
- The requests and completions for various types of processing such as initialization, opening, and communication are carried out here, as well as confirmation that processing has been completed.
- If the I/O is being used for the handshake, these addresses do not need to be used.

Error log area Addresses 380H to 3FFH

- Error-related information such as the contents of communication errors and unsuccessfully completed processing, as well as the contents of unit errors, are stored here as error codes.
- Up to 14 codes can be stored here at one time for each unit.
- The contents of these addresses can be confirmed using the shared memory readout menu in the programming tools.

4.4 Handshake Method

4.4.1 Handshake Method

Handshake Method

- The CPU unit and ET-LAN unit carry out initialization and termination processing, open and close processing, various types of communication processing requests, and confirmation of completion by means of a handshake.
- There are two types of handshake, one using the I/O and one using the shared memory.
- Both types can be used at the same time.

Handshakes using the I/O and using the shared memory

Item	I/O handshaking	Shared memory handshaking
Operation method	The various processes are executed by read- ing from and writing to the input contacts X and output contacts Y allocated to the ET- LAN unit from the ladder program.	The various processes are executed by read- ing from and writing to the handshaking area allocated to the shared memory in the ET- LAN unit from the ladder program.
Programming cautions	The input contacts X and output contacts Y can be used as it is.	The 150 (READ)/PREAD(P150), F151(WRT)/P151(PWRT) instructions are used to reflect the content of the shared memory handshake area to internal relays etc.
Operation in PROG. mode	The output contacts Y all go off. At this time, all connections (communication routes) are closed forcibly (communication not possible). Therefore, if the CPU unit switches from RUN to PROG. mode due to some error occurring, communication stops.	As the shared memory is not changed even in PROG. mode, the connection (communica- tion route) is not closed. However, if the connection is closed from another node when in PROG. mode, the ET- LAN will not execute a process to reopen it. When you switch from PROG. mode to RUN mode, and the reinitialize and re-opening processes are not executed, we recommend that you construct a program after referring to the flow chart on page 4 - 16.
Limits on the communication functions that can be used	For MEWTOCOL communication, all pro- cesses can be realized using connections 1 to 8. For transparent communication, only the pro- cesses for connections 1 to 3 can be realized. I/O handshaking cannot be realized.	For both MEWTOCOL communication and transparent communication, all processes can be realized using connections 1 to 8.
	I/O handshaking and shared memory handsha	king can be used simultaneously.

next page

4.4 Handshake Method

If both the I/O and shared memory handshakes are used at the same time, operation is as follows.

- Input conditions such as complete signals and error signals are updated in both the input relay <I/O> and the complete signal area <shared memory>.
- Output conditions such as request signals operate under the logical OR of the output relay <I/O> and the request signal area <shared memory>. As a result, if both are on, the result is on, and an off result is produced only if both are off.

4.4.2 Using the I/O for the Handshake

The I/O signals in the table below are used when a handshake is carried out between the CPU unit and the ET-LAN unit using the I/O.

Input

(Relay numbers indicate the numbers when installed in slot no. 0.)

No.	Description	No.	Description
X0	Receive notified signal (Connection 1)	X10	Open complete signal (Connection 1)
X1	Receive complete signal (Connection 1)	X11	Open error signal (Connection 1)
X2	Transmission complete signal (Connection 1)	X12	Open complete signal (Connection 2)
X3	Transmission error signal (Connection 1)	X13	Open error signal (Connection 2)
X4	Receive notified signal (Connection 2)	X14	Open complete signal (Connection 3)
X5	Receive complete signal (Connection 2)	X15	Open error signal (Connection 3)
X6	Transmission complete signal (Connection 2)	X16	Open complete signal (Connection 4)
X7	Transmission error signal (Connection 2)	X17	Open error signal (Connection 4)
X8	Receive notified signal (Connection 3)	X18	Open complete signal (Connection 5)
X9	Receive complete signal (Connection 3)	X19	Open error signal (Connection 5)
ХА	Transmission complete signal (Connection 3)	X1A	Open complete signal (Connection 6)
ХВ	Transmission error signal (Connection 3)	X1B	Open error signal (Connection 6)
ХС	Initialization complete signal	X1C	Open complete signal (Connection 7)
XD	Initialization error signal	X1D	Open error signal (Connection 7)
XE		X1E	Open complete signal (Connection 8)
XF	Error log notified complete signal	X1F	Open error signal (Connection 8)

Output

(Relay numbers indicate the numbers when installed in slot no. 0.)

No.	Description	No.	Description
Y20	Receive request signal (Connection 1)	Y30	Open request signal (Connection 1)
Y21		Y31	
Y22	Transmission request signal (Connection 1)	Y32	Open request signal (Connection 2)
Y23		Y33	
Y24	Receive request signal (Connection 2)	Y34	Open request signal (Connection 3)
Y25		Y35	
Y26	Transmission request signal (Connection 2)	Y36	Open request signal (Connection 4)
Y27		Y37	
Y28	Receive request signal (Connection 3)	Y38	Open request signal (Connection 5)
Y29		Y39	
Y2A	Transmission request signal (Connection 3)	Y3A	Open request signal (Connection 6)
Y2B		Y3B	
Y2C	Initialization request signal	Y3C	Open request signal (Connection 7)
Y2D		Y3D	
Y2E	Error LED flash off signal (See note.)	Y3E	Open request signal (Connection 8)
Y2F	Error log notified request signal	Y3F	

next page

4.4 Handshake Method

If the Error LED flashing out request signal (Y2E) is turned on, the flashing LEDs for E1 and E2 go out.

Also, while the Error LED flashing out request signal (Y2E) is on, the LEDs for E1 and E2 will not flash, even if a recoverable error or a warning error occurs. However, these functions are not affected by error log processing, so the error contents remain in the log.

4.4.3 Using the Shared Memory for the Handshake

Complete signal area (bank 0)

Expanded complete signal area (bank 0)

Addr	ess	Description
360H	bit 0	Receive notified signal (Connection 1)
	bit 1	Receive complete signal (Connection 1)
	bit 2	Transmission complete signal (Connection 1)
	bit 3	Transmission error signal (Connection 1)
bit 4		Receive notified signal (Connection 2)
	bit 5	Receive complete signal (Connection 2)
	bit 6	Transmission complete signal (Connection 2)
	bit 7	Transmission error signal (Connection 2)
	bit 8	Receive notified signal (Connection 3)
	bit 9	Receive complete signal (Connection 3)
	bit A	Transmission complete signal (Connection 3)
	bit B	Transmission error signal (Connection 3)
	bit C	Initialization complete signal
	bit D	Initialization error signal
	bit E	—
	bit F	Error log notified complete signal
361H	bit 0	Open complete signal (Connection 1)
	bit 1	Open error signal (Connection 1)
	bit 2	Open complete signal (Connection 2)
	bit 3	Open error signal (Connection 2)
	bit 4	Open complete signal (Connection 3)
	bit 5	Open error signal (Connection 3)
	bit 6	Open complete signal (Connection 4)
	bit 7	Open error signal (Connection 4)
	bit 8	Open complete signal (Connection 5)
	bit 9	Open error signal (Connection 5)
	bit A	Open complete signal (Connection 6)
	bit B	Open error signal (Connection 6)
	bit C	Open complete signal (Connection 7)
	bit D	Open error signal (Connection 7)
	bit E	Open complete signal (Connection 8)
	bit F	Open error signal (Connection 8)

Addr	224	Description
364H	bit 0	Receive notified signal (Connection 1)
50411	bit 1	Receive complete signal (Connection 1)
·	bit 2	Transmission complete signal (Connection 1)
	bit 3	Transmission error signal (Connection 1)
	bit 4	Receive notified signal (Connection 2)
	bit 5	Receive complete signal (Connection 2)
	bit 6	Transmission complete signal (Connection 2)
	bit 7	Transmission error signal (Connection 2)
	bit 8	Receive notified signal (Connection 3)
	bit 9	Receive complete signal (Connection 3)
	bit A	Transmission complete signal (Connection 3)
	bit B	Transmission error signal (Connection 3)
	bit C	Receive notified signal (Connection 4)
	bit D	Receive complete signal (Connection 4)
	bit E	Transmission complete signal (Connection 4)
	bit F	Transmission error signal (Connection 4)
365H	bit 0	Receive notified signal (Connection 5)
3031		Receive complete signal (Connection 5)
	bit 1 bit 2	Transmission complete signal (Connection 5)
		Transmission error signal (Connection 5)
	bit 3	
	bit 4	Receive notified signal (Connection 6)
	bit 5	Receive complete signal (Connection 6) Transmission complete signal (Connection 6)
	bit 6	1 9 1 1
	bit 7	Transmission error signal (Connection 6)
	bit 8	Receive notified signal (Connection 7)
	bit 9	Receive complete signal (Connection 7)
	bit A	Transmission complete signal (Connection 7)
	bit B	Transmission error signal (Connection 7)
	bit C	Receive notified signal (Connection 8)
	bit D	Receive complete signal (Connection 8)
	bit E	Transmission complete signal (Connection 8)
366H	bit F	Transmission error signal (Connection 8)
3001	bit 0	Receive error signal (Connection 1)
	bit 1	Receive error signal (Connection 2)
	bit 2	Receive error signal (Connection 3)
	bit 3	Receive error signal (Connection 4)
	bit 4	Receive error signal (Connection 5)
	bit 5	Receive error signal (Connection 6)
	bit 6	Receive error signal (Connection 7)
	bit 7	Receive error signal (Connection 8)
	bit 8 to	Reserved
	bit F	

next page

4.4 Handshake Method

The same signal (for example, the connection 1 Receive notified signal 360H bit 0 and 364H bit 0) can be used in both the signal complete area and the expanded complete signal area. It does not matter which signal is used in which area.

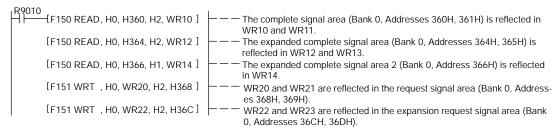
Handshake Method 4.4

Address		Description		ess	Description
368H	bit 0	Receive request signal (Connection 1)		bit 0	Receive request signal (Connection 1)
	bit 1	—		bit 1	—
	bit 2	Transmission request signal (Connection 1)		bit 2	Transmission request signal (Connection 1)
	bit 3	—		bit 3	—
	bit 4	Receive request signal (Connection 2)		bit 4	Receive request signal (Connection 2)
	bit 5	—		bit 5	—
	bit 6	Transmission request signal (Connection 2)		bit 6	Transmission request signal (Connection 2)
	bit 7	—		bit 7	—
	bit 8	Receive request signal (Connection 3)			Receive request signal (Connection 3)
	bit 9	—		bit 9	—
	bit A	Transmission request signal (Connection 3)		bit A	Transmission request signal (Connection 3)
	bit B	-		bit B	-
	bit C	Initialization request signal		bit C	Receive request signal (Connection 4)
	bit D	_		bit D	—
	bit E	Error LED flash off signal (See note.)		bit E	Transmission request signal (Connection 4)
	bit F	Error log notified request signal		bit F	—
369H	bit 0	Open request signal (Connection 1)	36DH	bit 0	Receive request signal (Connection 5)
	bit 1			bit 1	—
	bit 2	Open request signal (Connection 2)		bit 2	Transmission request signal (Connection 5)
	bit 3	—		bit 3	—
	bit 4	Open request signal (Connection 3)		bit 4	Receive request signal (Connection 6)
	bit 5	—		bit 5	—
	bit 6	Open request signal (Connection 4)		bit 6	Transmission request signal (Connection 6)
	bit 7	_		bit 7	-
	bit 8	Open request signal (Connection 5)		bit 8	Receive request signal (Connection 7)
	bit 9	—		bit 9	
	bit A	Open request signal (Connection 6)		bit A	Transmission request signal (Connection 7)
	bit B	—		bit B	—
	bit C	Open request signal (Connection 7)		bit C	Receive request signal (Connection 8)
	bit D	—		bit D	—
	bit E	Open request signal (Connection 8)		bit E	Transmission request signal (Connection 8)
	bit F	-		bit F	—

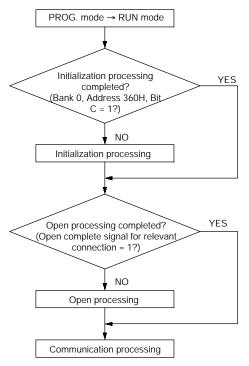
Request signal area (bank 0)

Expanded request signal area (bank 0)

Notes


- The same signal (for example, the connection 1 Receive • request signal 368H bit 0 and 36CH bit 0) can be used in both the signal complete area and the expanded complete signal area. It does not matter which signal is used in which area.
- If the Error LED flashing out signal (368H bit E) is turned on, • the flashing LEDs for E1 and E2 go out. Also, while the Error LED flashing out signal (368H bit E) is on, the LEDs for E1 and E2 will not flash, even if a recoverable error or a warning error occurs. However, these functions are not affected by error log processing, so the error contents remain in the log.

4.4 Handshake Method


Handshake using the shared memory

When using the shared memory to carry out the handshake, internal relays should be allocated to each of the signal areas, as shown in the program below.

Program example

Flow of processing when re-initialization and re-open processing are not carried out after a switch to RUN mode

Initialization Processing and Termination Processing

5.1	Initializa	lization/Termination Processing			
	5.1.1	What is Initialization Processing? 5 -	3		
5.2	Process	sing Procedures	5		
	5.2.1	An Overview of the Initialization Processing Procedure	5		
	5.2.2	An Overview of the Termination Processing Procedure 5 -	6		
	5.2.3	Writing Data to the Initialization Information Setting Area 5 -	7		
	5.2.4	Writing Data to the Routing Information Setting Area	13		
5.3	Reading	g Initialization Information 5 - 1	18		
5.4	Sample Program 5 - 20				

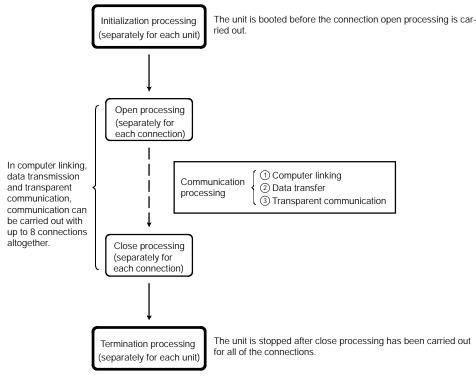
5.1 Initialization/Termination Processing

5.1 Initialization/Termination Processing

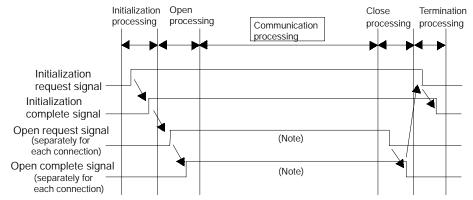
5.1.1 What is Initialization Processing?

Setting the various conditions for communication and booting the ET-LAN unit is called initialization processing.

In initialization processing, the contents of the initialization information setting area and the routing information setting area in the shared memory of the unit are specified.


If close processing has been completed for all of the connections, termination processing can be carried out to stop the ET-LAN unit.

Items set during initialization processing


Setting area	Setting item			
Initialization information	Source node IP address			
setting area	Communication function setting between networks			
	Source node MEWTOCOL station number			
	TCP ULP (packet existence duration)			
	TCP zero-window timer value			
	TCP re-transmission timer value			
	Receiving buffer starting address for transparent communication			
	Receiving buffer size for transparent communication			
	Transmission buffer starting address for transparent communication			
	Transmission buffer size for transparent communication			
Routing information setting	Network (subnetwork) masking			
area	Default router IP address			
	Number of registering router			
	Router network (subnetwork) address			
	Router IP address			

5.1 Initialization/Termination Processing

Operation of the ET-LAN unit

The relationship between initialization processing and open processing

Note: When the initialization complete signal is on, any number of open processing and close processing operations can be performed.

By changing the setting and performing re-open processing, it is possible to communicate with a different partner.

5.2 Processing Procedures

5.2.1 An Overview of the Initialization Processing Procedure

The unit is initialized and booted using the following procedure.

- (1) The necessary data is written to the initialization information setting area (Bank: 0, Addresses 200H to 22FH) in the shared memory.
- (2) If communication is to be carried out between networks, the necessary data is written to the routing information setting area (Bank: 0, Addresses 230H to 24FH) in the shared memory.
- (3) The initialization request signal is turned on.

Handshake method	Initialization request signal bit		
When I/O is used for handshake	Y2C		
When shared memory is used for handshake	Bank 0 Address 368H Bit C		

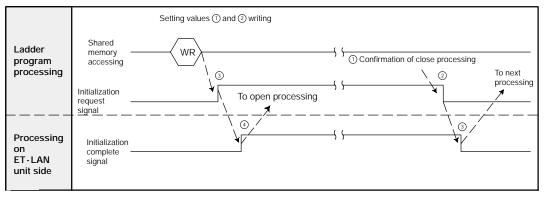
The initialization request signal should be kept on until termination processing is carried out.

(4) Check to make sure the initialization complete signal is on.

Handshake method	Initialization complete signal bit
When I/O is used for handshake	XC
When shared memory is used for handshake	Bank 0 Address 360H Bit C

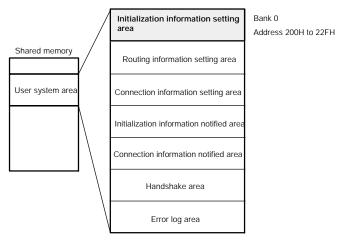
Data should be written to the initialization information setting area and the routing information setting area before initialization processing is carried out (before the request signal is turned on). (Data should not be written to these areas while the initialization complete signal is on.)

5.2.2 An Overview of the Termination Processing Procedure


The following procedure is used to stop operation of the unit.

- (1) Check to make sure that close processing has been completed for all of the connections.
- 2 Turn off the initialization request signal.
- ③ Check to make sure the initialization complete signal has gone off.

Note


If the initialization request signal is turned off while a connection is open, all of the connections will be forcibly closed.

Timing chart for initialization and termination processing

5.2.3 Writing Data to the Initialization Information Setting Area

The necessary data is written to the initialization information setting area (Bank 0: 0, Addresses: 200H to 22FH) of the shared memory using the shared memory writing instructions F151 (WRT) and P151 (PWRT).

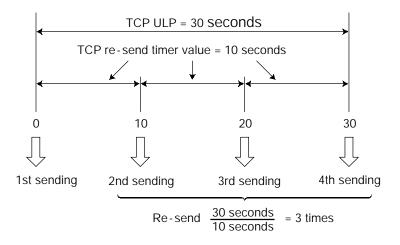
(Shared memory addresses are allocated in word units.)

Initialization information setting area (bank 0)

Address	Name	Default value	Setting value and Explanation	
200H	Source node IP address (L)	0000H	[Set value] Source node address - Address example: 192.168.1.1 (<u>C0 A8 01 01H</u>) IP address (L): 0101H	
201H	Source node IP address (H)	0000H	IP address (H): C0A8H - Any address other than 00000000H and FFFFFFFH is valid.	
202H	Communica- tion function setting between networks	0000H	 [Set value] 0000H: Communication between networks not used. 0001H: Communication between networks used. Specifies whether or not communication is carried out between networks using a router. If communication between networks is used, the routing information setting area should also be specified. 	
203H	Source node MEWTOCOL station number	0000H	 [Set value] 01H to 40H (01 to 64) Specifies the MEWTOCOL station no. of the source node as a value between 01 and 64 when MEWTOCOL communication is used. Specify a number that does not overlap that of any other station on the network. * A dummy value should be set even if MEWTOCOL communication is not being carried out. 	
204H 205H 206H 207H 208H 209H	Reserved (Used by the system.)	_	If any value is written, it should be 0000H.	

next page

Address	Name	Default value	Setting value and Explanation
20AH	TCP ULP (packet existence duration)	000FH [30 seconds]	 Setting time = [Setting value (1 to FFFH)] x 2 seconds With TCP, this specifies the time that a packet exists when data transmission, etc. is carried out.
20BH	TCP zero-window timer value	0005H [10 seconds]	 Setting time = [Setting value (1 to FFFFH)] x 2 seconds With TCP, this specifies the time until the receive window size check packet is re-sent when the receive window size of the other node becomes 0.
20CH	TCP re-transmis- sion timer value	0005H [10 seconds]	 Setting time = [Setting value (1 to FFFH)] x 2 seconds With TCP, this specifies the time until data is re-sent if ACK is not sent by the other node, when data transmission, etc. is carried out.
20DH	TCP closed timer value	0001H [2 seconds]	 Setting time = [Setting value (1 to FFFFH)] x 2 seconds This specifies the time waited until open processing is carried out when the same port is being re-opened, when TCP close processing is done by the source node.
20EH	IP reassembling timer value	000FH [30 seconds]	Setting time = [Setting value (1 to FFFFH)] x 2 seconds - This specifies the time waited for the next portion of data when data split by the IP is being received.
20FH	Reserved (Used by the system.)	_	If any value is written, it should be 0000H.


TCP ULP (packet existence duration) and TCP re-transmission timer value settings

When TCP/IP communication is being carried out, data is automatically re-sent the specified number of times, as shown in the illustration below.

Number of re-sends = $\left(\frac{\text{TCP ULP (packet existence duration)}}{\text{TCP re-transmission timer value}} \right)$

Values in the [] are rounded integer values.

Example: (when default settings are used) 20AH: TCP ULP = 000FH / 30 seconds 20CH: TCP re-send timer value = 0005H / 10 seconds

Notes

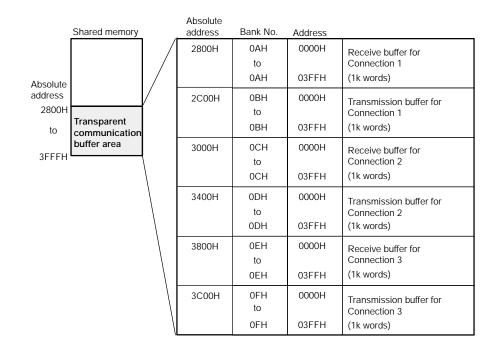
- If the value set for the TCP ULP is smaller than that set for the TCP re-send timer, the data will not be re-sent. Data will only be sent the first time.
- If UDP/IP is being used, re-sending is not carried out.

Tip

- Always specify the source node IP address and the source node MEW-TOCOL station number. If these are not specified correctly, an error will occur processing will be terminated, and the "E1" Error LED will light.
- If the default values are to be used for other timer values, no values need to be written.

Initialization information setting area 2 (bank 0)

Address	Name			Setting value and Explanation
210H		er starting address for transparent	2800H	[Set value] First address in receive buffer.
				 The first address of the receive buffer is specified using the absolute address (word address) of the shared memory when transparent communication is being carried out among the various connections. 0000H is set if this is not being
				used.
211H	Receiving buff (Connection 1)	er size for transparent communication	0400H	[Set value] Size of receive buffer.
		,		 The size of the receive buffer is spe- cified in word units when transparent communication is being carried out among the various connections.
				- FFFFH is set if this is not being used.
212H		buffer starting address for transparent n (Connection 1)	2C00H	[Set value] First address in send buffer.
				 The first address of the send buffer is specified using the absolute address (word address) of the shared memory when transparent commu- nication is being carried out among the various connections.
				- 0000H is set if this is not being used.
213H		buffer size for transparent	0400H	[Set value] Size of send buffer.
	communication	n (Connection 1)		- The size of the send buffer is speci- fied in word units when transparent communication is being carried out among the various connections.
				- FFFFH is set if this is not being used.
214H	Connection 2	Receiving buffer starting address for transparent communication	3000H	- The first address in each buffer should be specified using 2800H to 2555H (word address)
215H		Receiving buffer size for transparent communication	0400H	3FFFH (word address). - See "address 210H to 213H".
216H		Transmission buffer starting address for transparent communication	3400H	
217H		Transmission buffer size for transparent communication	0400H	
218H	Connection 3	Receiving buffer starting address for transparent communication	3800H	
219H		Receiving buffer size for transparent communication	0400H	
21AH		Transmission buffer starting address for transparent communication	3C00H	
21BH		Transmission buffer size for transparent communication	0400H	
21CH	Connection 4	Receiving buffer starting address for transparent communication	FFFFH	
21DH		Receiving buffer size for transparent communication	0000H	
21EH		Transmission buffer starting address for transparent communication	FFFFH	
21FH	Transmission buffer size for transparent communication			

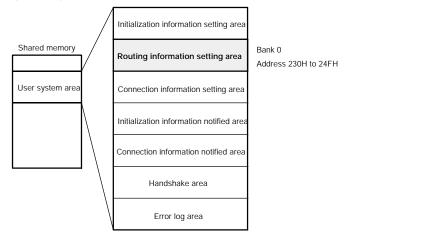

Address	Name		Default value	Setting value and Explanation
220H	Connection 5	Receiving buffer starting address for transparent communication	FFFFH	- The first address in each buffer should be specified using 2800H to
221H		Receiving buffer size for transparent communication	0000H	3FFFH (word address). - See "address 210H to 213H".
222H		Transmission buffer starting address for transparent communication	FFFFH	
223H		Transmission buffer size for transparent communication	0000H	
224H	Connection 6	Receiving buffer starting address for transparent communication	FFFFH	
225H		Receiving buffer size for transparent communication	0000H	
226H		Transmission buffer starting address for transparent communication	FFFFH	
227H		Transmission buffer size for transparent communication	0000H	
228H	Connection 7	Receiving buffer starting address for transparent communication	FFFFH	
229H		Receiving buffer size for transparent communication	0000H	
22AH		Transmission buffer starting address for transparent communication	FFFFH	
22BH		Transmission buffer size for transparent communication	0000H	
22CH	Connection 8	Receiving buffer starting address for transparent communication	FFFFH	
22DH		Receiving buffer size for transparent communication	0000H	
22EH		Transmission buffer starting address for transparent communication	FFFFH	
22FH		Transmission buffer size for transparent communication	0000H	

Transparent communication buffer area allocations

The transparent communication buffer area allocations (connections 1 to 3) effective when the unit is shipped from the factory are as shown below.

The first addresses and sizes of the send and receive buffers of connections 1 to 8 can be set to any desired values in the 6k words transparent communication buffer area, by changing the contents of the initialization information settings.

The shared memory addresses indicated below are in word (16-bit) units.



Tip

If the transparent communication function is not being used, it is not necessary to write anything to these areas.

5.2.4 Writing Data to the Routing Information Setting Area

When communication is to be carried out between networks, the necessary data is written to the routing information setting area of the shared memory (Bank 0: Addresses 230H to 24FH), using the shared memory writing instructions F151 (WRT) and P151 (PWRT).

(Shared memory addresses are allocated in word units.)

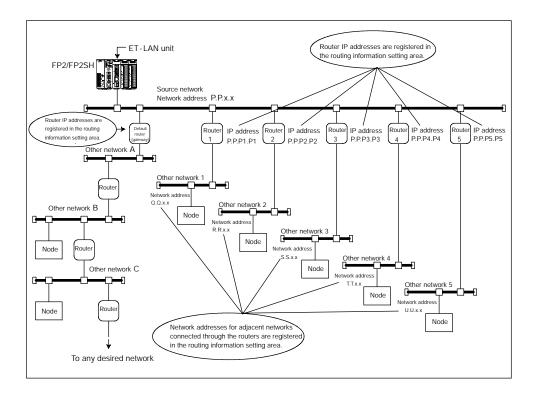
- In order to make the routing information setting area valid, "0001H" should be set for the communication function setting between networks (Bank 0: Address 202H). If "0000H" is specified, the routing information will be invalid.
- If communication is not to be carried out between networks through a router, no settings are necessary for this area.

Routing information setting area (bank 0)

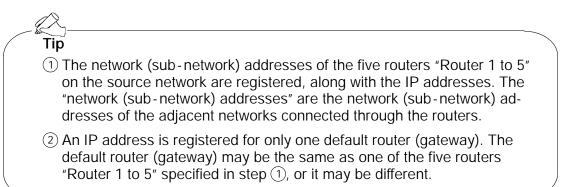
Address	Name	Default value	Setting value and Explanation
230H	Network (subnetwork) masking (L)	0000H	 FF000000H to FFFFFFCH: Field value that determines network address or subnetwork address. The network (subnetwork) mask is a value that sets the 32-bit network address used as the IP address and the bit used for the subnetwork address to "1". Example: FF000000H: For a Class A network 1111 1111 0000 0000 0000 0000 0000 FFC00000H: When 2 bits are used for a Class A subnetwork 1111 1111 1100 0000 0000 0000 0000 00
231H	Network (subnetwork) masking (H)	0000H	 1111 1111 1111 1111 1111 0000 0000 000
232H	Default router (Gateway) IP address (L)	0000H	 [Set values] Default router (gateway) IP address This is effective as long as the network (subnetwork) mask field is anything other than 0. If the default router (gateway) IP address has been set, communication will be carried out through the default router (gateway) without an error occurring even if the class, network address, or subnetwork address is
233H	Default router (Gateway) IP address (H)	0000H	 different from that of the destination node. The network (subnetwork) address for the default router (gateway) IP address must be identical to the network (subnetwork) address for the source node IP address. If they are different, an error will occur. 00000000H and FFFFFFFH will cause errors to occur.
234H	Number of registering router	0000H	 [Set value] 0 to 5 This specifies the number of routers used on the source network. The default router (gateway) is not included in the number of registered routers. This is effective as long as the network (subnetwork) mask field is anything other than 0. Any value higher than 5 will be treated as 5. The number of network addresses and router IP addresses registered should not exceed the number specified here.

Address	Name		Default value	Setting value and Explanation		
235H	Router 1 r	network (subnetwork) address (L)	0000H	[Set value] Network (sub - network) address of destination node - This specifies the network (sub - network) address for an adjacent network connected		
236H		network (subnetwork) address (H)	0000H	 through the router. 00000000H and FFFFFFFH will cause errors to occur. 		
237H	Router 1 F	Router IP address (L)	0000H	 [Set value] Router IP address The network (sub-network) address for the router address must be identical to the network (sub-network) address for the 		
238H	Router 1 F	Router IP address (H)	0000H	 source node IP address. If they are different, an error will occur. 00000000H and FFFFFFFH will cause errors to occur. 		
239H	Router 2	Network (subnetwork) address (L)	0000H	Refer to "address 235H to 238H".		
23AH		Network (subnetwork) address (H)				
23BH		Router IP address (L)				
23CH		Router IP address (H)				
23DH	Router 3	Network (subnetwork) address (L)	0000H			
23EH		Network (subnetwork) address (H)				
23FH		Router IP address (L)				
240H		Router IP address (H)				
241H	Router 4	Network (subnetwork) address (L)	0000H			
242H		Network (subnetwork) address (H)				
243H		Router IP address (L)				
244H		Router IP address (H)				
245H	Router 5	Network (subnetwork) address (L)	0000H			
246H		Network (subnetwork) address (H)				
247H		Router IP address (L)				
248H		Router IP address (H)				
249H		(Used by the system.) ie is written to these, it should be 000	юн.			
24AH						
24BH						
24CH						
24DH						
24EH						
24FH						

Router 1 to 5 and default router (gateway) settings

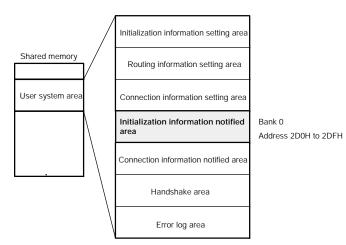

The ET-LAN unit can communicate not only with the destination nodes on the source network, but also with destination nodes on other networks, through the router.

There are two types of communication that can be carried out with destination nodes on other networks, as described below.


① Communication with destination nodes on adjacent networks registered in advance (Other networks 1, 2, 3, ... in the diagram)

② Communication with destination nodes on any other desired network (Other networks A, B, C, in the diagram)

With the ET-LAN unit, with regard to the routers on the source network through which the type of communication described in ① is handled (there may be up to five of these routers), the IP address(es) of the router(s) and the network (sub-network) address(es) of the adjacent network(s) connected through the router(s) are registered in the routing information. The router on the source network through which the communication described in ② is handled is called the default router (gateway), and the IP address for this default router is also registered in the routing information.


- If the destination node exists in any of the <Other networks 1 to 5> noted above, the ET-LAN unit communicates with the node through routers 1 to 5. In this case, the network (sub-network) address of the destination node will match the "Network (sub-network) address" of one of the five routers registered in the routing information setting area. (Refer to the IP addresses for the five routers "Router 1 to 5" in the illustration, and to the network addresses for the five networks "Network 1 to 5".)
- In any other case, communication with the destination node is carried out through the default router (gateway) (if the destination node is located in networks A to C in the illustration).

5.3 Reading Initialization Information

5.3 Reading Initialization Information

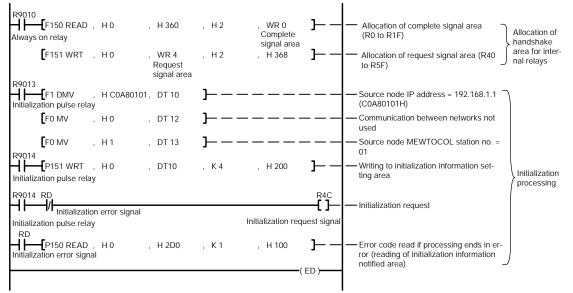
The initialization information subsequent to the initialization processing of the current unit can be read from the shared memory. The initialization information notified area (Bank: 0, Addresses: 2D0H to 2DFH) should be read using the shared memory read instruction F150 (READ) and P150 (PREAD).

(Shared memory addresses are allocated in word units.)

Initialization information notified area (bank 0)

Address	Name	Setting value and Explanation		
2D0H	Initialization processing complete code	[Stored value] 0: Initialization processing was completed successfully. Any other value: Error code (initialization processing ended in an error)		
2D1H	Source node IP address	[Stored value] Source node IP address when initialization processing was completed successfully.		
2D2H	Source node IP address	 The written value is the source node address in the initialization information setting area. 		
		 The value is not entered until initialization processing has been com- pleted successfully. 		
2D3H	Communication function setting between net-	[Stored value] 0: Communication function setting between networks is not used.		
	works	1:Communication function setting between networks is used.		
		 The value is not entered until initialization processing has been com- pleted successfully. 		
2D4H	Source node MEWTOCOL station	[Stored value] Source node MEWTOCOL station number when initiali- zation processing has been completed successfully.		
	number	 The written value is the source node MEWTOCOL station number in the initialization information setting area. 		
		 The value is not entered until initialization processing has been com- pleted successfully. 		
2D5H (lower word)	Source node ethernet address (48 bits)	[Stored value] Source node Ethernet address in the EEPROM Example: If 1.2.3.4.5.6 has been set: 2D5H 0506H		
2D6H		2D6H 0304H 2D7H 0102H		
2D7H (higher word)		 The value is not entered until initialization processing has been com- pleted successfully. 		

5.3 Reading Initialization Information


Address	Name	Setting value and Explanation
2D8H	Reserved (Used by the sy	stem.)
2D9H		
2DAH		
2DBH		
2DCH		
2DDH		
2DEH		
2DFH		

5.4 Sample Program

5.4 Sample Program

This sample program assumes that the ET-LAN has been installed in slot no. 0.

Program example

Allocation of internal relays

Classification Device number		Device used in program example		
Complete signal area R0 to R1F		RD: Initialization error signal		
Request signal area R40 to R5F		R4C: Initialization request signal		

Allocation of data registers

Classification of processing	Device number	Setting item	Program example setting
Initialization processing	DT10 to DT11	Source node IP address	192. 168. 1. 1
	DT12	Communication function setting between networks	Not used
	DT13	Source node MEWTOCOL station number	01

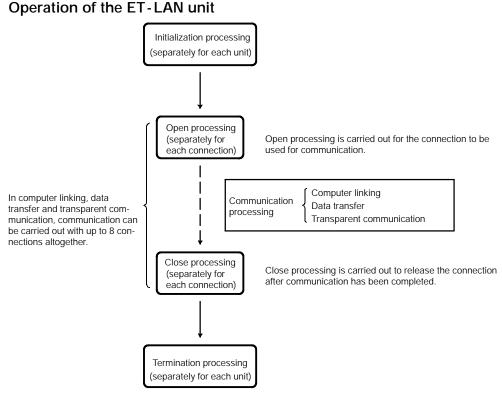
Open Processing and Close Processing

6.1	Open/C	Nose Processing	6 - 3
	6.1.1	What is Open Processing?	6 - 3
	6.1.2	Types of Open Processing	6 - 5
6.2	Process	sing Procedures	6 - 8
	6.2.1	An Overview of the Open Processing Procedure	6 - 8
	6.2.2	An Overview of the Close Processing Procedure	6 - 9
	6.2.3	Writing Data to the Connection Information Setting Area	6 - 10
6.3	Reading	g Connection Information	6 - 13

6.1 Open/Close Processing

6.1.1 What is Open Processing?

Setting the connection information used to carry out communication with a partner node and enabling communication is called open processing.


Connections for up to eight connections can be opened with a single ET-LAN unit. The contents noted in the table below are set in the open information setting area of the shared memory in the unit for each connection.

When communication has been completed, close processing can be used to release the connection.

Items set for open processing

Setting area	Setting item				
Open information setting	Application being	Communication method (TCP/IP or UDP/IP)			
area	used	Open method (Active, Fullpassive or Unpassive)			
		Application using the connection (MEWTOCOL commu- nication or Transparent communication)			
	Source node port No.				
	Partner node IP address				
	Partner node port No.				
	Partner node MEWTOCOL station number				
	Partner node ethernet address				

6.1

The relationship between open processing and close processing

Note: When the initialization complete signal is on, any number of open processing and close processing operations can be performed. By changing the setting and performing re-open processing, it is possible to communicate with a different partner.

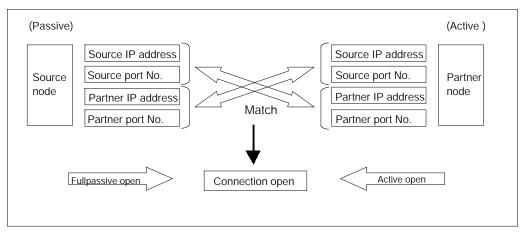
6.1.2 Types of Open Processing

Open processing when using TCP/IP

- Transmission Control Protocol (TCP) is a type of connection protocol in which it is necessary to open mutual connections between the source and partner nodes before communication processing can be carried out.
- There are three ways to open a connection, as described on the following page.
- With the ET-LAN unit, the method of opening the connection is specified by writing a value to the shared memory.

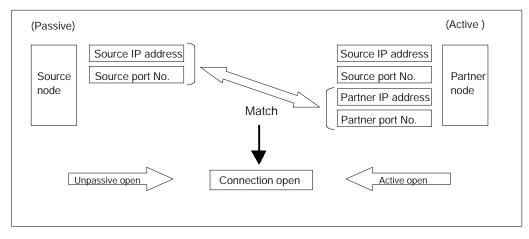
Open processing when using UDP/IP

- User Datagram Protocol (UDP) is a protocol in which connections are not used. Data can be transferred simply by specifying the IP address of the partner node and the number of the port being used, so no mutual connections need to be opened.
- With the ET-LAN unit, however, open processing is necessary in order to specify the application, the number of the port being used, and the IP address.

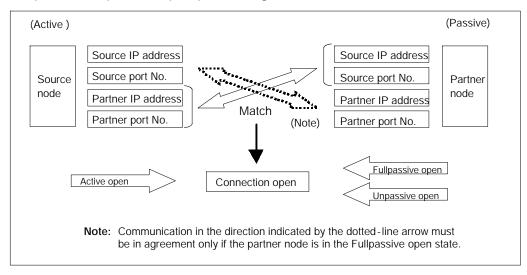


If connections have been functionally opened for both the source and partner nodes (active connections are open), or if the connections between the source and partner nodes are passively open (Fullpassive open or Unpassive open), no connection is opened between the nodes when open processing is carried out.

next page


Fullpassive open (Passive connection open)

The system is waiting for data to be received from a given partner node, in order to establish a connection. In the Fullpassive open method, the IP address and port number of the partner node are specified, and then the system waits for reception.


Unpassive open (Passive connection open)

The system is waiting for data to be received from an unspecified partner node, in order to establish a connection. In the Unpassive open method, the connection information concerning the partner node should be read and confirmed when a connection has been opened.

Active open (Active connection open)

The connection is actively established. When the Active open is specified, the source node should not begin Active open processing until the partner node has begun Fullpassive/Unpassive open processing.

6.2 Processing Procedures

6.2.1 An Overview of the Open Processing Procedure

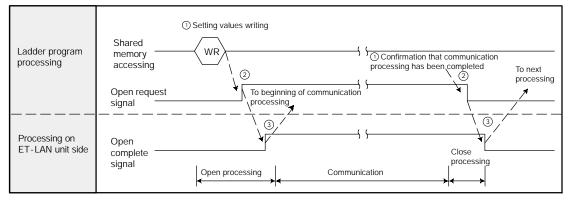
(1) The data required for communication with the partner node is set in the connection information setting area (Bank: 0, Addresses 250H to 2CFH).

2 The open request signal is turned on.

Hand- shake	Open request signal bit								
method	Connection 1	Connection 2	Connection 3	Connection 4	Connection 5	Connection 6	Connection 7	Connection 8	
When I/O is used for handshake	Y30	Y32	Y34	Y36	Y38	Y3A	Y3C	Y3E	
When shared memory is	Bank 0: Ad	dress 369H							
used for handshake	Bit 0	Bit 2	Bit 4	Bit 6	Bit 8	Bit A	Bit C	Bit E	

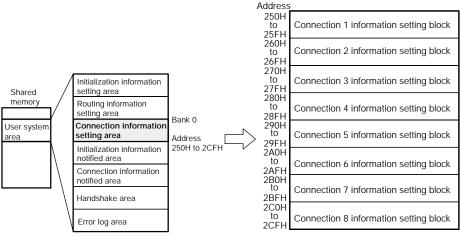
③ Check to make sure the open complete signal is on.

Hand- shake	Open complete signal bit								
method	Connection 1	Connection 2	Connection 3	Connection 4	Connection 5	Connection 6	Connection 7	Connection 8	
When I/O is used for handshake	X10	X12	X14	X16	X18	X1A	X1C	X1E	
When shared memory is	Bank 0: Ad	dress 361H		_					
used for handshake	Bit 0	Bit 2	Bit 4	Bit 6	Bit 8	Bit A	Bit C	Bit E	



- The connection information setting area should be specified before open processing is carried out (the request signal goes on).
- Changes to the connection information setting area are invalid while the open complete signal is on. To change the contents of the area, first close the connection, and then carry out re-open processing after the changes have been made.
- The open request signal should be kept on until close processing is carried out.

6.2.2 An Overview of the Close Processing Procedure


- ① Check to make sure the open complete signal is on.
- (2) Turn off the open request signal.
- ③ Check to make sure the open complete signal is off.

Timing chart for open/close processing

6.2.3 Writing Data to the Connection Information Setting Area

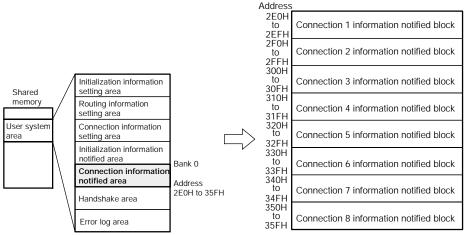
The necessary data is written to the connection information setting area (Bank 0: Address 250H to 2CFH) of the shared memory using the shared memory writing instructions F151 (WRT) and P151 (PWRT).

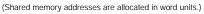
(Shared memory addresses are allocated in word units.)

- The connection information setting area consists of eight blocks, to match the number of connections.
- The offset address contents from the table in the next page are allocated for the various connections.

- Offset addresses 0 to 8 are written before open processing is carried out.
- Offset addresses D and F are used when communication processing is being carried out using the transparent communication function.

Offset address

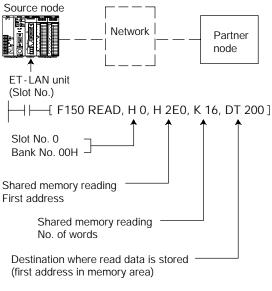

Offset address	Name	Default value	Set value and Explanation
0	Setting area for application being used (connections 1 to 8)	0000H	 [Set value] 1 - word data that sets the communication conditions for the various connections as bit information. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 (a) Communication (b) Open method (c) Application in which connection is used 0: TCP/IP 10: Unpassive 0: Used as MEWTOCOL 1: UDP/IP 11: Fullpassive 0: Used as MEWTOCOL 1: UDP/IP 11: Fullpassive communication 1: Used as transparent communication (a) Communication method (b) Open method (c) Application in which connection is used 0: TCP/IP 10: Unpassive 0: Used as MEWTOCOL 1: UDP/IP 11: Fullpassive 1: Used as transparent communication (c) Communication method (d) Communication method (e) Communication method (f) Communication method (g) Communication is the data transfer function, always set TCP/IP. (h) Opening method This is valid only if TCP/IP was specified as the communication method. Active open: Connection is actively established. Fullpassive open: System waits for reception from a specified partner node in order to establish a connection. Unpassive open: System waits for reception from an unspecified partner node in order to establish a connection. (c) Application in which connection is used If using computer linking or data transfer, set "0: MEWTOCOL communication".
1	Source node port No. (connections 1 to 8)	0000H	 [Set value] TCP or UDP communication process port number. Set any port number other than 0H (a value of 1025 (401H) or higher is recommended).
2	Partner node IP address (L) (connections 1 to 8)	0000H	[Set value] Partner node IP address When using TCP Fullpassive and Active open: Specify an IP address for the partner node that is in the same class, and is other than 0H or FFFFFFFH. When using UDP:
3	Partner node IP address (H) (connections 1 to 8)	0000H	Use an IP address for the partner node that is in the same class, and is other than 0H. When using TCP Unpassive open: No address needs to be specified.
4	Partner node port No. (connections 1 to 8)	0000H	 [Set value] Partner node port number Set any port number other than 0H (a value of 1025 (401H) or higher is recommended). This is not necessary when using TCP Unpassive open.


next page

Offset address	Name	Default value	Set value and Explanation	
5	Partner node MEWTOCOL station number (connections 1 to 8)	0000H	 [Set value] 1 to 64 Set the station number of the partner node when MEWTOCOL communication is being carried out. Avoid duplicating the number of another station on the network. This is ignored if MEWTOCOL communication is not being used 	
6 (lower word)	Partner node ethernet address (connections	0000H	 [Set value] Ethernet address of partner node When using TCP Active open, if the partner node has no ARP function, specify this. Example: If 1.2.3.4.5.6 is set, the offset addresses will be: 	
7	1 to 8)	0000H	6 0506H 7 0304H	
8		0000H	8 0102H	
(higher word)			 If "0" or "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	
9	Reserved (Used by the system.)			
Α	If any value is written to these, it should be 0000H.			
В				
С	1			
D	Receive request data size (connections 1 to 8)	0000H	 [Set value] Receive request data size (in byte units) This is specified if data is being received in transparent communication. No receive notification is made until data equal to the specified size has been received. If "FFFFH" is specified, direct reception is carried out (the receive complete signal goes on each time a packet is received). Specify a size such that the receive request data size is less than or equal to the size of the receive buffer x 2. 	
E	Reserved (Used by the system.)			
	If any value is written to these, it should be 0000H.			
F	Transmission request data size (connections 1 to 8)	0000H	 [Set value] Transmission request data size (in byte units) If data is being sent using transparent communication, specify the size of the data being sent in byte units. Specify a size such that the transmission request data size is less than or equal to the size of the transmission buffer x 2. 	

6.3 Reading Connection Information

The current statuses of the settings for the various connections can be read from the shared memory. Settings are read from the connection information notified area (Bank 0: Address 2E0H to 35FH) using the shared memory reading instructions F151 (READ) and P151 (PREAD).



- The connection information setting area consists of eight blocks, to match the number of connections.
- The offset address contents from the table in the next page are allocated for the various connections.

Program example

This program uses an ET-LAN installed in slot no. 0, as shown below, and reads the connection information for connection 1.

next page

Tip

- Offset addresses 0 to 4 are stored after open processing has been completed.
- Offset addresses A to F are stored after communication processing has been completed, when using the transparent communication function.

Offset address

Offset address	Name	Stored value and Explanation	
0	Open processing complete code (connections 1 to 8)	[Stored value] 0: Open processing has been completed successfully. Other than 0: Error code (when open processing ended in an error) - If re-open processing is carried out, the results are overwritten. - Error codes are also stored in the error log area.	
1	Source node port No. (connections 1 to 8)	[Stored value] Source node port numbers for various connections after open processing has been completed.The value is not entered until open processing has been successfully completed.	
2	Partner node IP address (L) (connections 1 to 8)	[Stored value] Partner node IP addresses for various connections after open processing has been completed.The value is not entered until open processing has been successfully completed.	
3	Partner node IP address (H) (connections 1 to 8)		
4	Partner node port No. (connections 1 to 8)	[Stored value] Partner node IP port numbers for various connections after open processing has been completed.The value is not entered until open processing has been successfully completed.	
5	Partner node MEWTOCOL station number (connections 1 to 8)	[Stored value] Partner node MEWTOCOL station numbers for various connections after open processing has been completed.The value is not entered until open processing has been successfully completed.	
6 to 9	Reserved (Used by the system.)		
A	Transparent receive processing complete code (connections 1 to 8)	 [Stored value] 0: Receive processing completed normally. Other than 0: Error code (stored when the receive processing error is completed) Result is written when receive processing is done again. The error code is stored in the error log area. 	
В	Transparent receive unnotified data size (connections 1 to 8)	 [Stored value] Size of the transparent received data remaining in the ET-LAN unit (in bytes). Receive processing for this amount of data will finish normally and receive requests accepted even if the connection is closed. 	
С	Transparent receive unnotified data size copy (connections 1 to 8)	 [Stored value] Copy of the size of the transparent received data remaining in the ET-LAN unit (in bytes). The same value as the transparent receive unnotified data size above is stored. If the two values match, the size of the transparent receive data will be fixed, so after they match, send a receive request using this value. 	

Offset address	Name	Stored value and Explanation
D	Transparent receive noti- fied data size (connections 1 to 8)	 [Stored value] Size of the data actually received for the receive request in transparent communication (in byte units) It is not possible for this value to be notified as exceeding the receive request data size. If the connection has been closed, receive processing may end in some cases even if the receive request data size has not been satisfied. If this happens, this value is notified as being less than the receive request data size.
E	Transparent transmission processing complete code (connections 1 to 8)	[Stored value] 0: Transmission processing has been completed successfully. Other than 0: Error code (when transmission processing ended in an error) - If transmission processing is carried out again, the results are overwritten. - Error codes are also stored in the error log area.
F	Transparent transmission complete data size (connections 1 to 8)	 [Stored value] Size of the data actually sent to the partner node for the transmission request in transparent communication (in byte units) It is not possible for this value to be notified as exceeding the transmis sion request data size. If the connection has been closed by the partner node during the trans mission, the transmission may be aborted. If this happens, this value is notified as being less than the transmission request data size. If close processing is requested by the source node during the transmission, the transmission processing is carried out first, and then close processing is carried out. Even if the transmission processing ends in an error for some reason, transmission processing of the size of data corresponding to this value is completed normally.

Port number settings

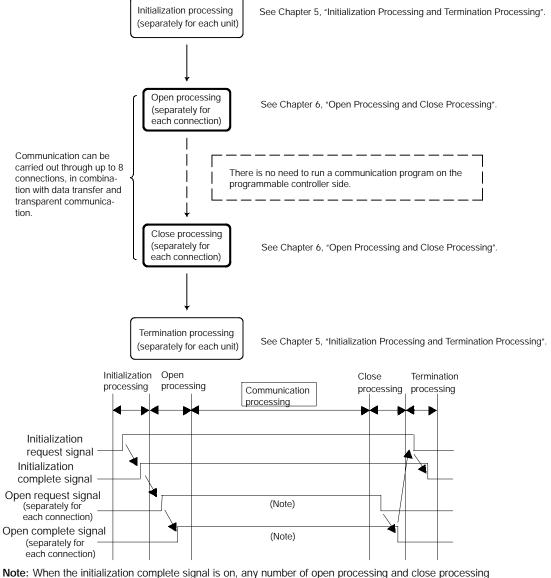
Port numbers are allocated in order for the various communication processes provided by the TCP or UDP to be differentiated by the programmable controller or the computer.

The restrictions that apply to available port numbers are different for TCP/IP and UDP/IP, as indicated in the table below.

	Setting status of por	Applicable communication protocol			
				TCP/IP	UDP/IP
Multiple connections with a single partner node	Source node Connection 1 Connection 2	Partner node O	Multiple settings for both source node port number and partner node port number	Available	Available
	Source node Connection 1 Connection 2	Partner node	Single setting for source node port number, multiple settings for partner node port number	Not available	Not available
	Source node Connection 1 Connection 2	Partner node	Multiple settings for source node port number, single setting for part- ner node port number	Available	Not available
	Source node Connection 1 Connection 2	Partner node	Neither source node port number nor partner node port number can be set to single setting	Not available	Not available
Connections with multiple partner nodes	Source node Connection 1 Connection 2	Partner node	Multiple settings for source node port number	Available	Available
	Source node Connection 1 Connection 2	Partner node	Single setting for source node port number	Not available	Not available

- We recommend setting the port number to a value of 1025 (401H) or higher.
- The same port number can be specified for the source node and the partner node.
- The same port number can be specified for TCP and UDP.

Computer Link Function


7.1	Computer Link Procedure 7				
7.2	An Ove	erview of the Computer Link Function 7 - 4			
	7.2.1	What is the Computer Link Function? 7 - 4			
	7.2.2	Commands and Functions Available for Use			
7.3	Setting	s on the PLC Side 7 - 7			
	7.3.1	Connection Information Settings			
	7.3.2	Writing to the Shared Memory			
	7.3.3	Sample Program 7 - 10			
7.4	Comma	and Communication on the Computer Side . 7 - 12			
	7.4.1	Communication Data Format 1			
	7.4.2	Communication Data Format ②			

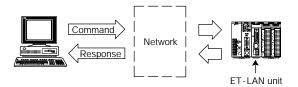
7.1 Computer Link Procedure

7.1 Computer Link Procedure

When computer link communication is being carried out on the programmable controller side, open processing is used to specify the MEWTOCOL communication mode and to open the connection with the partner node after initialization processing for the unit has been carried out. After a connection has been opened with the partner node computer, there is no need to run a communication program on the programmable controller side. Instead, the programmable controller receives command messages from the computer, and automatically sends response messages back.

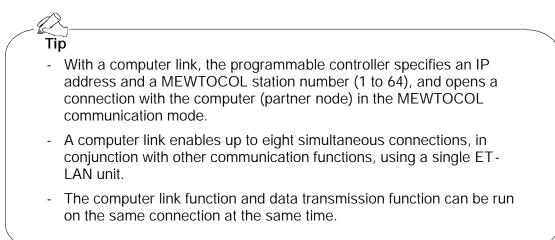
Procedure for setting up an ET-LAN unit computer link

Note: When the initialization complete signal is on, any number of open processing and close processing operations can be performed. By changing the setting and performing re-open processing, it is possible to communicate with a different partner. 7.2 An Overview of the Computer Link Function


7.2 An Overview of the Computer Link Function

7.2.1 What is the Computer Link Function?

A computer link is a function that enables a computer to read data from, and write data to, the I/O or register of a programmable controller, and to read from and write to the contents of the registers and programs in the controller.


An interactive communication procedure (protocol) called MEWTOCOL-COM is used for the computer link.

Communication is carried out by the computer sending command (instruction) messages to the programmable controller and receiving response messages from the programmable controller.

When the programmable controller receives a command message, it automatically returns a response message.

After a connection has been opened, there is no need to create a program on the programmable controller side to handle communication.

7.2.2 Commands and Functions Available for Use

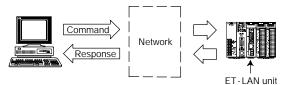
MEWTOCOL-COM Commands

Command name	Code	Description
Read contact area	RC (RCS) (RCP) (RCC)	Reads the on/off status of relays. - Specifies only one point - Specifies multiple points. - Specifies a range in word units.
Write contact area	WC (WCS) (WCP) (WCC)	Turns relays on and off. - Specifies only one point - Specifies multiple points. - Specifies a range in word units.
Read data area	RD	Reads the contents of a data area.
Write data area	WD	Writes data to a data area.
Read timer/counter set value area	RS	Reads the set value for a timer/counter.
Write timer/counter set value area	WS	Writes the set value for a timer/counter.
Read timer/counter elapsed value area	RK	Reads the timer/counter elapsed value.
Write timer/counter elapsed value area	WK	Writes the timer/counter elapsed value.
Register or Reset contacts monitored	MC	Registers the relay to be monitored.
Register or Reset data monitored	MD	Registers the data to be monitored.
Monitoring start	MG	Monitors a registered relay or data.
Preset contact area (fill command)	SC	Embeds the area of a specified range in a 16-point on/off pattern.
Preset data area (fill command)	SD	Writes the same contents to the data area of a specified range.
Read system register	RR	Reads the contents of a system register.
Write system register	WR	Specifies the contents of a system register.
Read the status of PLC	RT	Reads the specifications of the programmable controller and error codes if an error occurs.
Remote control	RM	Switches the operation mode of the programmable controller.
Abort	AB	Aborts communication.

next page

7.2 An Overview of the Computer Link Function

cated	Commands and responses used with the ET-LAN unit have a dedi- cated header added to the "MEWTOCOL-COM" communication pro- cedure of the FP series PLC.					
	ontents of the	e specified header vary depending on the commu-				
pansi	With the ET-LAN unit, in addition to ordinary MEWTOCOL, an expansion header is also supported that enables single frames of up to 2,048 characters to be sent.					
Тур	e of header	No. of characters that can be sent in 1 frame				
% Max. 118 characters						
	<	Max. 2048 characters				


For detailed information on MEWTOCOL-COM, please see Chapter 12.

7.3 Settings on the PLC Side

7.3.1 Connection Information Settings

A memory area such as the data registers of the programmable controller is set aside, and the data to be written to the connection information area of the shared memory is specified when the open processing is carried out.

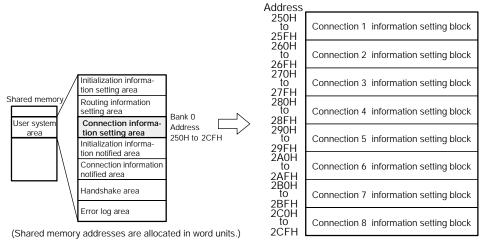
When using a computer link, the contents of the specified data are as indicated below.

Contents of data settings

Address	Name	Explanation		
DTn	Setting area for application being used	Set value: 8000H When using UDP/IP 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		
		Set value: 0000H When using TCP/IP Active open		
		Set value: 0300H When using TCP/IP Fullpassive open		
		Set value: 0200H When using TCP/IP Unpassive open		
DTn+1	Source node port No.	Specify any port number other than 0H. (A value of 1025 (401H) or higher is recommended.)		
DTn+2	Partner node IP address (L)	Specify the IP address of the partner node. Example: To specify 192.168.1.2 (<u>C0 A8 01 02H</u>): DTn + 2: 0102H		
DTn+3	Partner node IP address (H)	DTn + 3: C0A8H This is not necessary when using the Unpassive open mode of TCP.		
DTn+4	Partner node port No.	Specify any port number for the partner node other than 0H. (A value of 1025 (401H) or higher is recommended.) This is not necessary when using the Unpassive open mode of TCP.		
DTn+5	Partner node MEWTOCOL station number	Always specify a MEWTOCOL station number of between 1H and 40H (1 to 64) for the partner node computer.		
DTn+6 (lower word)	Partner node ethernet address	When using the Active open mode of TCP/IP, if the partner node has no ARP function, specify the Ethernet address of the partner node. In any other case, specify 0H.		
DTn+7		Example: To specify 1.2.3.4.5.6:		
DTn+8 (higher word)		DTn + 6 0506H DTn + 7 0304H DTn + 8 0102H		

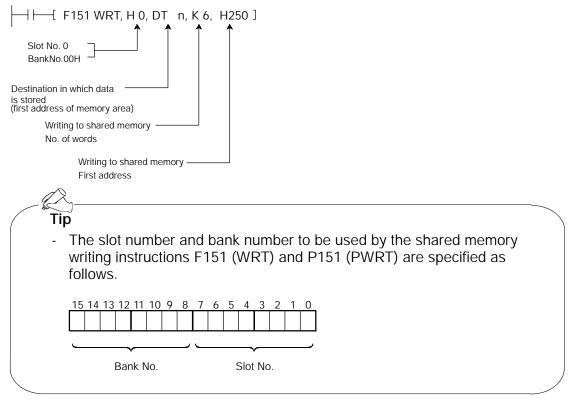
next page

7.3 Settings on the PLC Side



- We recommend specifying a port number of 1025 (401H) or higher.
- Specify a MEWTOCOL station number within a range of 1 to 64, choosing a number that does not duplicate any other station number on the same network.
- When using the Active open mode, if the partner node has no ARP function, specify the Ethernet address of the partner node for "DTn + 6 to DTn + 8".

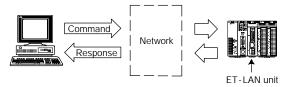
7.3.2 Writing to the Shared Memory


The specified data is written to the connection information setting area of the shared memory using the shared memory writing instructions F151 (WRT) and P151 (PWRT).

Shared memory address

Program example

If using connection 1 of the ET-LAN unit installed in slot no. 0, the program for writing data to the shared memory would be as follows.



7.3 Settings on the PLC Side

7.3.3 Sample Program

Program contents

- The sample program is for an ET-LAN unit installed in slot no. 0, and covers communication settings up to where the connection is opened as a result of the contents noted below.
- After the connection has been opened, no communication program is necessary on the PLC side.

Internal relay allocation

Classification	Device number	Devices used in program example	
Complete signal area	R0 to R1F	RCInitialization complete signalRDInitialization error signalR11Open error signal (Connection 1)	
Request signal area	R40 to R5F	R4CInitialization request signalR50Open request signal (Connection 1)	

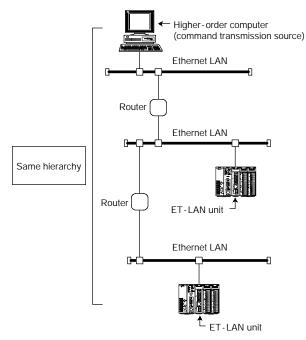
Data register allocation

Classification of processing	Device number	Setting item	Setting for program example
Initialization processing	DT10 to DT11	Source node IP address	192. 168. 1. 1 (C0A80101H)
	DT12	Communication function setting between networks	Not used
	DT13	Source node MEWTOCOL station number	01
Open processing	DT20	Open method	MEWTOCOL communication TCP/IP Fullpassive open
	DT21	Source node port No.	5000
	DT22 to DT23	Partner node IP address	192. 168. 1. 2 (C0A80102H)
	DT24	Partner node port No.	5000
	DT25	Partner node MEWTOCOL station number	02

Program example

R9013 F1 DMV , H COA80101, DT 10]	٦
Initialization pulse relay Initialization pulse relay [F0 MV H 0 DT 12 Initialization pulse relay [F0 MV H 1 DT 13 Initialization pulse relay [F0 MV H 1 DT 13 Initialization pulse relay [F1 MRT H 0 DT 10 K 4 H 200 [F1 S1 WRT H 0 DT 10 K 4 H 200 [R901 RD R4C R4C Initialization request	Initialization pro- cessing
Initialization error signal Initialization request signal Initialization pulse relay Initialization request signal RD Initialization error signal Initialization error signal Error code read if processing Initialization error signal Initialization error signal R9013 R9013	J
Initialization pulse relay Image: Constraint of the second se	
[F0 MV , K 5000 , DT 24] Partner node port No.=5000 [F0 MV , H 2 , DT 25] Partner node MEWTOCOL station number=02 [F151 WRT , H 0 , DT 20 , K 6 , H 250] RC R11 R50 [] Station number=02 Up open error signal Open complete signal Open request (after initialization processing has been complete)	Open processing

Initialization complete signal


ete signal mple)p

7.4 Command Communication on the Computer Side

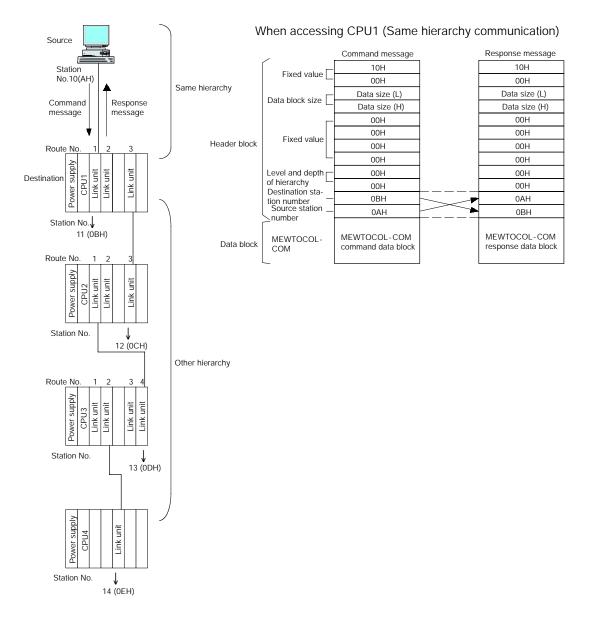
7.4.1 Communication Data Format ①

Format when the partner node is on the same hierarchy level as the MEWTOCOL communication

- If there is no other link unit between the computer and the partner node, acting as a relay station, the partner node is said to be on the same hierarchy level as the computer.
- With the ET-LAN unit, if the computer link function is being used with a unit on the same hierarchy level, commands and responses are sent and received using the format noted below.

Format of command transmission data

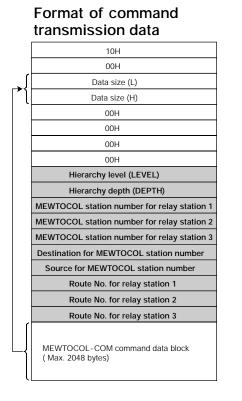
	10H
	00H
	Data size (L)
*[Data size (H)
	00H
	00H
	00H
	00H
	Hierarchy level (LEVEL): Fixed 00H
	Hierarchy depth (DEPTH): Fixed 00H
	Destination for MEWTOCOL station number
	Source for MEWTOCOL station number
_{	MEWTOCOL-COM command data block (Max. 2048 bytes)

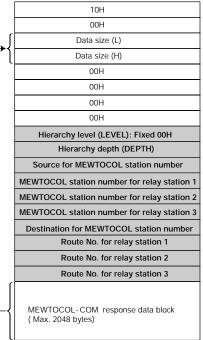

Format of response received data

	10H
	00H
ſ	Data size (L)
Ĩ	Data size (H)
	00H
	00H
	00H
	00H
	Hierarchy level (LEVEL): Fixed 00H
	Hierarchy depth (DEPTH): Fixed 00H
	Source for MEWTOCOL station number
	Destination for MEWTOCOL station number
-{	MEWTOCOL-COM response data block (Max. 2048 bytes)

Precautions concerning format

- The number of bytes comprising the MEWTOCOL-COM command or message is converted to hexadecimal data and specified for the "Data Size" parameter.
- The station number of the station sending the command is specified for "Source for MEWTOCOL station number".
- The station number of the station receiving the command is specified for "Destination for MEWTOCOL station number".
- "00H" should be specified for both "Hierarchy level (LEVEL)" and "Hierarchy depth (DEPTH)".

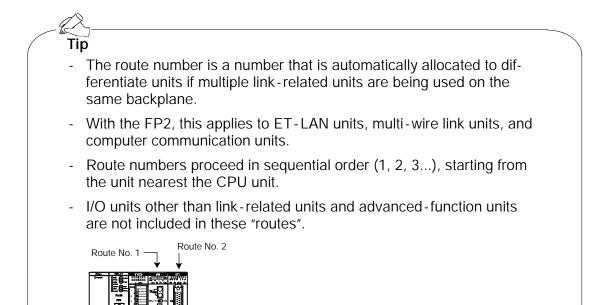

Example of communication data (Same hierarchy communication)


7.4.2 Communication Data Format 2

Format when the partner node is not on the same hierarchy level as the MEWTOCOL communication

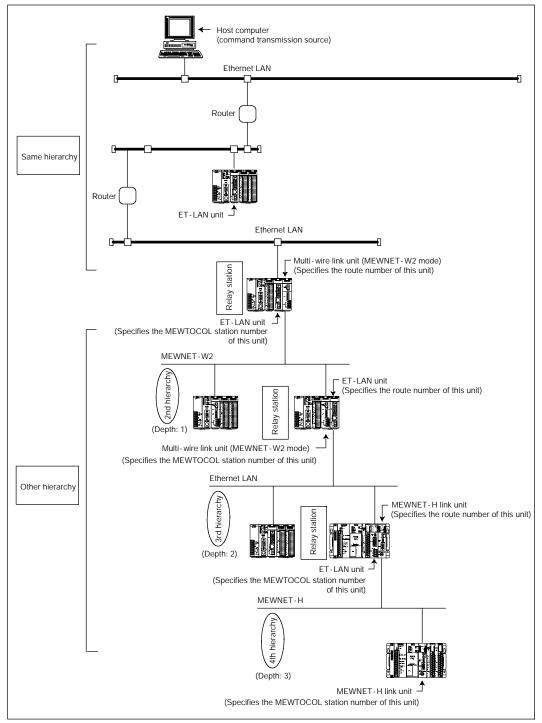
- If there is another link unit between the computer and the partner node, acting as a relay station, the partner node is said to be on a different hierarchy level from the computer.
- With the ET-LAN unit, if the computer link function is being used with a unit on a different hierarchy level, commands and responses are sent and received using the format noted below.

Format of response received data



Precautions concerning format

- The number of bytes comprising the MEWTOCOL-COM command or message is converted to hexadecimal data and specified for the "Data Size" parameter.
- The "Station Number for Relay Station" and "Route Number for Relay Station" parameters should be specified using the pertinent number. If there is only one relay station, the spaces for the second and third relay stations will be filled in, closing the gap.

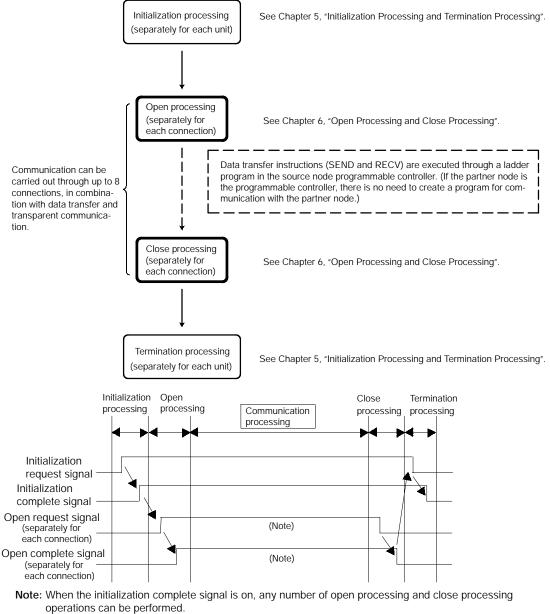

next page

- 7.4 Command Communication on the Computer Side
- The station number of the station sending the command is specified for "Source for MEWTOCOL station number".
- The station number of the station receiving the command is specified for "Destination for MEWTOCOL station number".
- With commands, the same value should be specified for the "Hierarchy level (LEVEL)" and "Hierarchy depth (DEPTH)" parameters.
- With responses, "Hierarchy level (LEVEL)" is fixed at 00H.

When accessing CPU2 (Other hierarchy communication) Source Command message Response message 10H 10H Station Fixed value No.10(AH) 00H 00H Data size (L) Data size (L) Same hierarchy Data block size Command Response Data size (H) Data size (H) message message 00H 00H 00H 00H Fixed value 00H 00H Route No 2 3 1 Header block 00H 00H Power supply Level and depth 01H 00H Link unit unit -ink unit CPU1 Relay of hierarchy 01H 01H Link station 1 mber for relay station1 0BH 0AH Destination station number 0CH 0BH Station No. urce station number 0AH 0CH 11 (OBH) Route No. for relay station 1 -03H 03H Route No. 1 2 MEWTOCOL-COM MEWTOCOL-COM MEWTOCOL-COM Data block command data block response data block ²ower supply -ink unit unit -ink unit CPU2 Relay Link station 2 When accessing CPU4 (Other hierarchy communication) Station No. Command message Response message 12 (0CH) 10H 10H Fixed value 00H 00H Other hierarchy Data size (L) Data size (L) Route No. Data block size 2 3 1 Data size (H) Data size (H) 00H 00H Power suppl unit unit unit unit Relay CPU3 00H 00H station 3 Link ı Link ı ink Link Fixed value 00H 00H 00H 00H Level and depth 03H 00H Station No. Header block of hierarchy 03H 03H 13 (ODH) Station number for relay station1 0BH 0AH Station number for relay station2 0CH 0BH mber for relay station3 0DH 0CH ' supply 0FH 0DH unit 0AH 0FH Source station number CPU4 Destination , İ Power 03H 03H No. for relay station 1 01H 01H Route No. for relay station 2 No. for relay station 3 02H 02H Station No. ſ 14 (0EH) MEWTOCOL-COM MEWTOCOL-COM Data block MEWTOCOL-COM command data block response data block

Example of communication data (Other hierarchy communication)

Other hierarchy communication for MEWTOCOL-COM


Data Transfer Function

8.1	Data Tr	ansfer Procedure 8 - 3
8.2	An Ove	rview of the Data Transfer Function
	8.2.1	What is the Data Transfer Function? 8 - 4
	8.2.2	Commands and Functions that can be Used 8 - 5
8.3	Settings	s on the PLC Side 8 - 7
	8.3.1	Connection Information Settings
	8.3.2	Writing to the Shared Memory 8 - 9
	8.3.3	Sample Program 8 - 10
8.4	Data Pr	rocessing on the Computer Side
	8.4.1	Communication Data Format ①
	8.4.2	Communication Data Format 2 8 - 15
	8.4.3	Communication Data Format ③

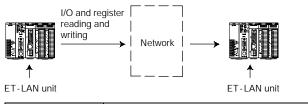
8.1 Data Transfer Procedure

When data is being transferred with a programmable controller, open processing is used to specify the MEWTOCOL communication mode and to open the connection with the partner node after initialization processing for the ET-LAN unit has been carried out. After a connection has been opened with the partner node computer, data transfer instructions are executed through ladder programs.

Procedure for transferring ET-LAN unit data

By changing the setting and performing re-open processing, it is possible to communicate with a different partner.

8.2 An Overview of the Data Transfer Function


8.2 An Overview of the Data Transfer Function

8.2.1 What is the Data Transfer Function?

With the data transfer function in the ET-LAN unit, program instructions (the SEND and RECV instructions) in the programmable controller are used to transfer data. Data can be transferred between the units indicated below.

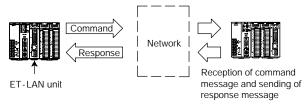
- Between one PLC and another
- Between a PLC and computer

The maximum amount of data that can be transferred with a single data transfer instructions is 1,020 words.

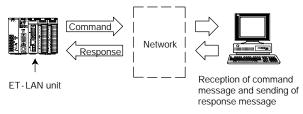
	Writes data to the I/O or register of the partner node			
RECV instruciton	Reads data from the I/O or register of the partner node			

Note

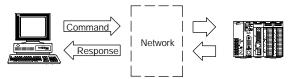
When using the data transfer function, TCP/IP should be used in order to assure the reliability of the communication.


- With data transfer, the programmable controller specifies an IP address and a MEWTOCOL station number (1 to 64), and opens a connection with the computer (partner node) in the MEWTOCOL communication mode.
- After the connection has been opened, the communication destination is specified only by the MEWTOCOL station number (1 to 64) in the ladder program on the programmable controller side.
- Data transfer enables up to eight simultaneous connections, in conjunction with other communication functions, using a single ET-LAN unit.
- There is no need to notate a program to handle communication, after the connection has been opened, for the programmable controller on the side that receives the data transfer command.
- The computer link function and data transmission function can be run on the same connection at the same time.

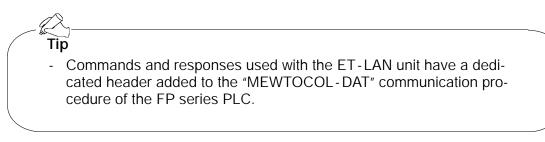
8.2 An Overview of the Data Transfer Function


8.2.2 Commands and Functions that can be Used

Data transfer commands and MEWTOCOL-DAT command messages


- Executing a data transfer command sends a MEWTOCOL-DAT command message to the partner node programmable controller, which then automatically returns a response message.

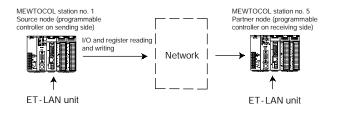
- When data is being sent from a programmable controller to a computer, the reception of the MEWTOCOL-DAT command message and the sending of the response message are handled on the computer side.


- When data is being sent from a computer to a PLC, the MEWTOCOL-DAT command message is sent to the partner node programmable controller, which automatically sends back a response message.

MEWTOCOL-DAT Commands

Command code	Command name	Functions
50H	Write word area	The specified number of words of data are written, starting from the specified first word number in the data area.
51H	Read word area	The specified number of words of data are read, starting from the specified first word number in the data area.
52H	Write contact information	Data is written to the specified relay of the relay area.
53H	Read contact information	Data is read from the specified relay of the relay area.

8.2 An Overview of the Data Transfer Function


For detailed information on MEWTOCOL-DAT, please see Chapter 12.

8.3 Settings on the PLC Side

8.3.1 Connection Information Settings

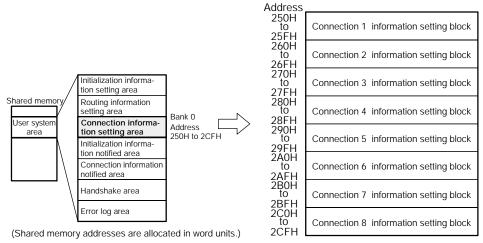
A memory area such as the data registers of the programmable controller is set aside, and the data to be written to the connection information area of the shared memory is specified when the open processing is carried out.

When using data transfer, the contents of the specified data are as indicated below.

Contents of data settings

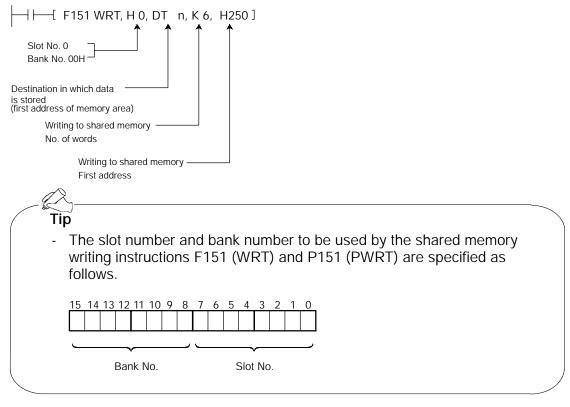
Address	Name	Explanation				
DTn	Setting area for application being used	Set value: 0000H When using TCP/IP Active open				
		Set value: 0300H When using TCP/IP Fullpassive open				
		Set value: 0200H When using TCP/IP Unpassive open				
DTn+1	Source node port No.	Specify any port number other than 0H. (A value of 1025 (401H) or higher is recommended.)				
DTn+2	Partner node IP address (L)	Specify the IP address of the partner node. Example: To specify 192.168.1.2 (<u>C0 A8 01 02H</u>): DTn + 2: 0102H				
DTn+3	Partner node IP address (H)	DTn + 3: C0A8H This is not necessary when using the Unpassive open mode of TCP.				
DTn+4	Partner node port No.	Specify any port number for the partner node other than 0H. (A value of 1025 (401H) or higher is recommended.) This is not necessary when using the Unpassive open mode of TCP.				
DTn+5	Partner node MEWTOCOL station number	Always specify a MEWTOCOL station number of between 1H and 40H (1 to 64) for the partner node computer.				
DTn+6 (lower word)		When using the Active open mode of TCP/IP, if the partner node has no ARP function, specify the Ethernet address of the partner node. In any				
DTn+7	Partner node	other case, specify 0H. Example: To specify 1.2.3.4.5.6:				
DTn+8 (higher word)	ethernet address	DTn + 6 <u>0506H</u> DTn + 7 <u>0304H</u> DTn + 8 <u>0102H</u>				

next page


Notes

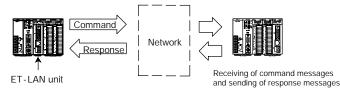
- Because the reliability of communication cannot be assured with UDP/IP, we recommend using TCP/IP.
- We recommend specifying a port number of 1025 (401H) or higher.
- Specify a MEWTOCOL station number within a range of 1 to 64, choosing a number that does not duplicate any other station number on the same network (subnetwork).
- When using the Active open mode, if the partner node has no ARP function, specify the Ethernet address of the partner node for "DTn + 6 to DTn + 8".

8.3.2 Writing to the Shared Memory


The specified data is written to the connection information setting area of the shared memory using the shared memory writing instructions F151 (WRT) and P151 (PWRT).

Shared memory address

Program example


If using connection 1 of the ET-LAN unit installed in slot no. 0, the program for writing data to the shared memory would be as follows.

8.3.3 Sample Program

Program contents

- The sample program is for an ET-LAN unit installed in slot no. 0, and covers communication settings up to where the SEND instruction is executed after the connection is opened as a result of the contents noted below.
- After the connection has been opened, no communication program is necessary on the PLC side receiving the MEWTOCOL-DAT commands.

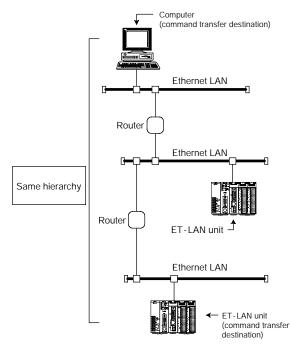
Internal relay allocation

Classification	Device number	Devices used in program example		
Complete signal area	R0 to R1F	RCInitialization complete signalRDInitialization error signalR11Open error signal (Connection 1)		
Request signal area	R40 to R5F	R4CInitialization request signalR50Open request signal (Connection 1)		

Data register allocation

Classification of processing	Device number	Setting item	Setting for program example
Initialization processing	DT10 to DT11	Source node IP address	192. 168. 1. 1 (C0A80101H)
	DT12	Communication function setting between networks	Not used
	DT13	Source node MEWTOCOL station number	01
Open processing	DT20	Open method	MEWTOCOL communication TCP/IP Fullpassive open
	DT21	Source node port No.	5000
	DT22 to DT23	Partner node IP address	192. 168. 1. 2 (C0A80102H)
	DT24	Partner node port No.	5000
	DT25	Partner node MEWTOCOL station number	05
Data transfer	DT27 to DT28	Source node route No.	1
processing		Partner node MEWTOCOL station number	05
		Number of words transferred	3
Transfer data area	DT100 to DT102	Transfer data writing area	

Program example


110	gram cha	mpic						
	-F150 READ , on relay	Н 0	, Н 360	, H 2	, WR 0 Complete sig] nal area	 —Allocation of complete signal area (R0 to R1F) 	J
,	F150 READ	H 0	, H 364	, H2	, WR 2 Complete sig]— — nal area	 Allocation of expanded complete signal area (R20 to R3F) 	Allocation of
	[F151 WRT ,	H 0	, WR 4 Request sign	, H2 al area	, Н 368	J— —	Allocation of request signal area (R40 to R5F)	handshake area for internal relays
	[F151 WRT ,	Н 0	, WR 6 Request sign	, H 2	, H 36C	}_ —	 Allocation of expanded request signal area (R60 to R7F) 	J
	- [F1 DMV , ation pulse relay	H C0A80101	, DT 10	J			—Source node IP address= 192. 168. 1. 1 (C0A80101H)	ן
	F0 MV	H 0	, DT 12	}			 Communication between networks not used 	
	FO MV ,	H 1	, DT 13]		- — —	 Source node MEWTOCOL station number=01 	
R9014	F151 WRT , RD	H 0	, DT 10	, К4	, H 200]— — _{R4C}	 Writing to initialization information setting area 	Initialization processing
	Initialization error ation pulse relay	r signal		I	Initialization reque	st signal	-Initialization request	
Initializa	-P150 PREAD, ation error signal	Н 0	, H 2D0	, K1	, DT 300	<u>}</u>	 Error code read if processing ends in error (reading of initialization infor mation notified area) 	.]
	ation pulse relay	H 300	, DT 20	<u>}</u>			 Selects MEWTOCOL protocol and TCP/IP Fullpassive open 	ן
	F0 MV	K 5000	, DT 21	<u>}</u>		- — —	-Source node port No. =5000	
	F1 DMV	H C0A80102	, DT 22	<u> </u>			Partner node IP address= 192. 168. 1. 2 (C0A80102H)	
	FO MV ,	K 5000	, DT 24]		- — —	Partner node port No.=5000	
	F0 MV	H 5	, DT 25	J		- — —	—Partner node MEWTOCOL station number=05	Open processing
RC	[F151 WRT , R11	H 0	, DT 20	, K6	, H 250] — — _{R50}	 Writing to connection information setting area of connection 1 	
	Open error signa ation complete sig	ıl gnal			Open reque	est signal	 Open request for connection 1 (after initialization processing has been completed) 	
Open e	-P150 PREAD, rror signal	Н 0	,H 2E0	, K1	, DT 310	<u>} </u>	 Error code read if processing ends in error (reading of connection infor- mation notified area) 	
	- [F1 DMV , ation pulse relay	H 1050003	, DT 27	}			Setting of control data Upper word: Source node route no. = 1, partner node MEWTOCOL station no. = Lower word: Word transfer; sends 3 wor	5
RC SE Initializa R500	R9030 R10	n complete si Inal	gnal			R500	 Execution conditions Initialization completed, connection 1 open completed, R9030 = ON 	Data transfer
	P145 PSEND,	DT 27	, <u>DT 100</u>	, <u>DT 0</u>	, <u>K 1000</u>	<u>} </u>	-Data transfer execution	
		Specifies source	ce node from DT0	on Specifies	s partner node from D	T1000 on ED) ——	Contents of source node from DT100 on (3 words) sent to partner node from DT1000 on	J
I						I		

8.4 Data Processing on the Computer Side

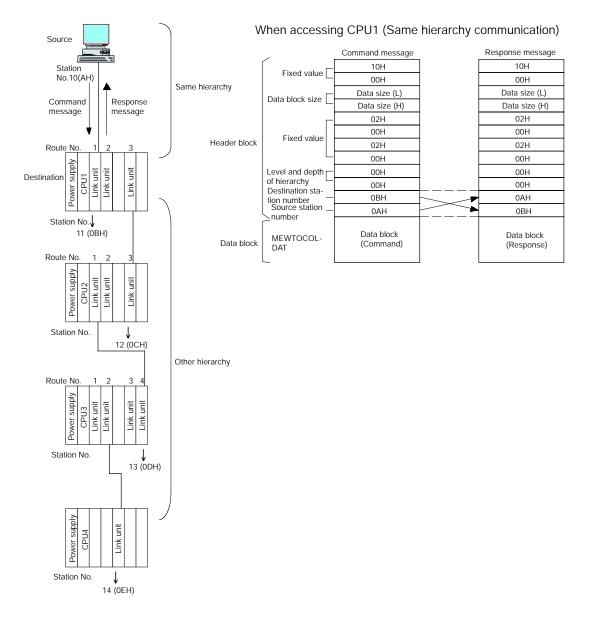
8.4.1 Communication Data Format ①

Format when the partner node is on the same hierarchy level as the MEWTOCOL communication

- If there is no other link unit between the computer and the partner node, acting as a relay station, the partner node is said to be on the same hierarchy level as the computer.
- When the data transfer function is being used between units on the same hierarchy, commands and responses are sent and received using the format indicated below.

Format of command transmission data

	10H
	00H
Ĵ	Data size (L)
<u> </u>	Data size (H)
Ī	02H
Ī	00H
	02H
Ī	00H
	Hierarchy level (LEVEL): Fixed 00H
	Hierarchy depth (DEPTH): Fixed 00H
Ī	Destination for MEWTOCOL station number
	Source for MEWTOCOL station number
_{	MEWTOCOL-DAT command data block (Max. 2048 bytes)


Format of response received data

	10H
	00H
ſ	Data size (L)
1	Data size (H)
	02H
	00H
	02H
	00H
	Hierarchy level (LEVEL): Fixed 00H
	Hierarchy depth (DEPTH): Fixed 00H
	Destination for MEWTOCOL station number
	Source for MEWTOCOL station number
_{	MEWTOCOL-DAT response data block (Max. 2048 bytes)

Precautions concerning format

- The number of bytes comprising the MEWTOCOL-DAT command or message is converted to hexadecimal data and specified for the "Data Size" parameter.
- The station number of the station sending the command is specified for "Source for MEWTOCOL station number".
- The station number of the station receiving the command is specified for "Destination for MEWTOCOL station number".
- "00H" should be specified for both "Hierarchy level (LEVEL)" and "Hierarchy depth (DEPTH)".

Example of communication data (Same hierarchy communication)

8.4.2 Communication Data Format 2

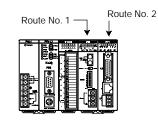
Format when the partner node is not on the same hierarchy level as the MEWTOCOL communication

- If there is another link unit between the computer and the partner node, acting as a relay station, the partner node is said to be on a different hierarchy level from the computer.
- When the data transfer function is being used to send data to a unit on a different hierarchy, commands and responses are sent and received using the format indicated below.

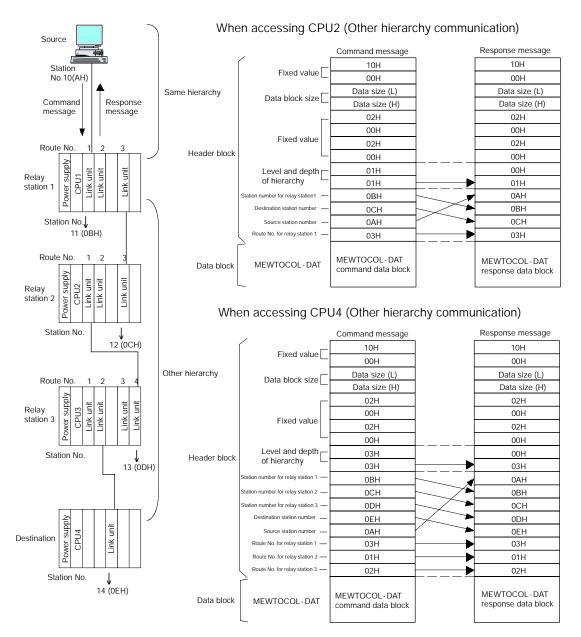
10H
00H
Data size (L)
Data size (H)
02H
00H
02H
00H
Hierarchy level (LEVEL)
Hierarchy depth (DEPTH)
MEWTOCOL station number for relay station 1
MEWTOCOL station number for relay station 2
MEWTOCOL station number for relay station 3
Destination for MEWTOCOL station number
Source for MEWTOCOL station number
Route No. for relay station 1
Route No. for relay station 2
Route No. for relay station 3
Data block (Max. 2048 bytes)

Format of command

Format of response received data

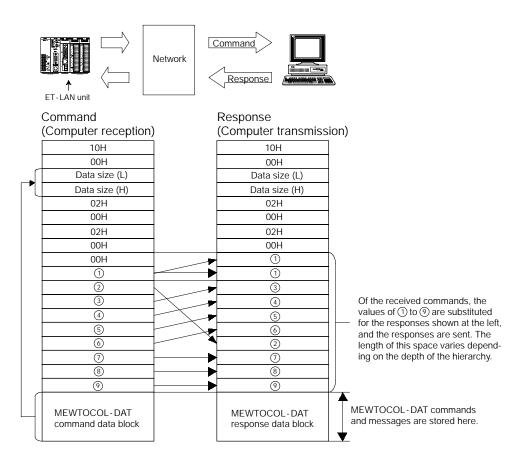

	10H
	00H
ſ	Data size (L)
7	Data size (H)
	02H
	00H
	02H
	00H
	Hierarchy level (LEVEL): Fixed 00H
	Hierarchy depth (DEPTH)
	Source for MEWTOCOL station number
	MEWTOCOL station number for relay station 1
	MEWTOCOL station number for relay station 2
	MEWTOCOL station number for relay station 3
	Destination for MEWTOCOL station number
	Route No. for relay station 1
	Route No. for relay station 2
	Route No. for relay station 3
_{	Data block (Max. 2048 bytes)

Precautions concerning format

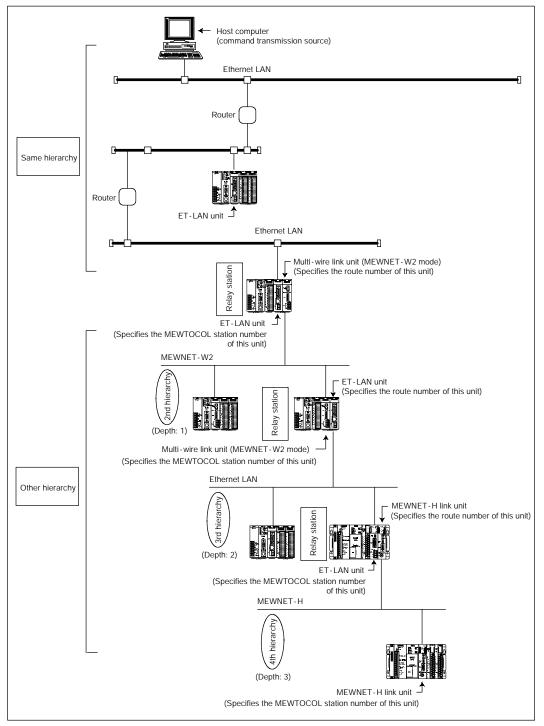

- The number of bytes comprising the MEWTOCOL-DAT command or message is converted to hexadecimal data and specified for the "Data Size" parameter.
- The "Station Number for Relay Station" and "Route Number for Relay Station" parameters should be specified using the pertinent number. If there is only one relay station, the spaces for the second and third relay stations will be filled in, closing the gap.
- The station number of the station sending the command is specified for "Source for MEWTOCOL station number".
- The station number of the station receiving the command is specified for "Destination for MEWTOCOL station number".
- For the command, the same value, within a range of "01H to 03H", should be specified for both the "Hierarchy level (LEVEL)" and "Hierarchy depth (DEPTH)" parameters.
- With responses, "Hierarchy level (LEVEL)" is fixed at 00H.

Tip

- The route number is a number that is automatically allocated to differentiate units if multiple link-related units are being used on the same backplane.
- With the FP2, this applies to ET-LAN units, multi-wire link units, and computer communication units.
- Route numbers proceed in sequential order (1, 2, 3...), starting from the unit nearest the CPU unit.
- I/O units other than link-related units and intelligent units are not included in these "routes".


Example of communication data (Other hierarchy communication)

8.4.3 Communication Data Format ③


Format when MEWTOCOL communication is being carried out from a PLC to a computer on the other hierarchy

- If there is another link unit between the PLC and the partner node, acting as a relay station, the PLC is said to be on a different hierarchy level from the computer.
- The format in which the computer receives data from a PLC on a different hierarchy and sends responses is generally as shown below.
- The format varies depending on the hierarchy position of the PLC on the sending side.

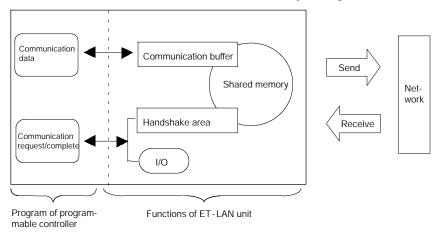
Precautions concerning format

The number of bytes comprising the MEWTOCOL-DAT command or message is converted to hexadecimal data and specified for the "Data Size" parameter.

Other hierarchy communication for MEWTOCOL-DAT

Transparent Communication Function

9.1	An Overview of the Transparent Communication Function					
	9.1.1	What is the Transparent CommunicationFunction?9 - 3				
9.2	Transp	ansparent Communication Procedures				
9.3	Setting	rs on the PLC Side				
	9.3.1	Connection Information Settings				
	9.3.2	Writing to the Shared Memory				
9.4		unication Processing for Transparent unication				
	9.4.1	Communication Processing Procedure 9 - 8				
	9.4.2	Procedure for Transmission Processing 9 - 10				
	9.4.3	Procedure for Reception Processing 9 - 12				
	9.4.4	Handshake Signal and Data Area				
9.5	Sample Program					
	9.5.1	Sample Program <initialization open="" to=""> . 9 - 18</initialization>				
	9.5.2	Sample Program < Transmission Processing and Reception Processing>				
	9.5.3	Sample Program <reception to="" transmission=""></reception>				


9.1 An Overview of the Transparent Communication Function

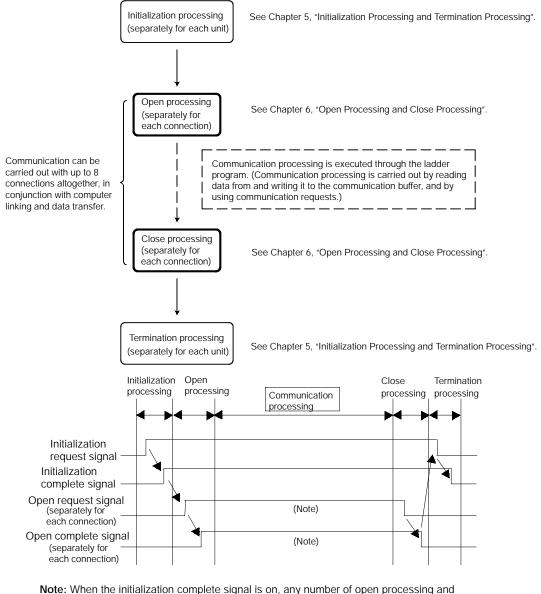
9.1 An Overview of the Transparent Communication Function

9.1.1 What is the Transparent Communication Function?

With the transparent communication function, data can be sent and received transparently between a computer and a programmable controller, and between two programmable controllers.

Communication data can be stored to and retrieved from the programmable controller by reading from and writing to the reception buffer of the shared memory in the ET - LAN unit. Communication requests and other commands are executed by the bits of the handshake area in the I/O or shared memory being turned on and off.

Tip


- With the transparent communication function, the programmable controller or computer specifies an IP address to open a connection with the communication destination.
- After the connection has been opened, communication processing on the programmable controller side is carried out by data being read from or written to the communication buffer of the shared memory through the ladder program, and by communication requests being executed.
- Up to eight connections can be used on a single ET-LAN unit by using the transparent communication function in conjunction with MEWTOCOL communication functions (computer linking and data transfer).

9.2 Transparent Communication Procedures

9.2 Transparent Communication Procedures

To carry out transparent communication using an ET - LAN unit, initialization processing is first carried out for the unit, and then a connection is opened between the source node and the partner node, through open processing. Once this connection has been opened, communication processing is executed through the ladder program.

Procedure for transparent communication with the ET-LAN unit

Iote: When the initialization complete signal is on, any number of open processing and close processing operations can be performed. By changing the setting and performing re-open processing, it is possible to communi-

cate with a different partner.

9.3.1 Connection Information Settings

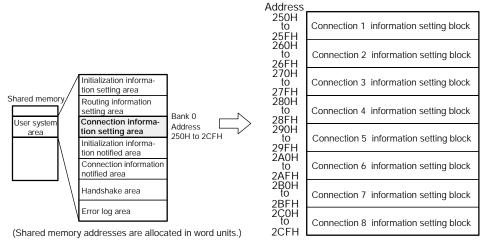
A memory area such as the data registers of the programmable controller is set aside, and the data to be written to the connection information area of the shared memory is specified when the open processing is carried out.

When the transparent communication is being used, the contents of specified data are as indicated below.

Address	Name	Explanation
DTn	Setting area for application being used	Set value: 8001H When using UDP/IP 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
		Set value: 0001H When using TCP/IP Active open
		Set value: 0301H When using TCP/IP Fullpassive open
		Set value: 0201H When using TCP/IP Unpassive open
DTn+1	Source node port No.	Specify any port number other than 0H. (A value of 1025 (401H) or higher is recommended.)
DTn+2	Partner node IP address (L)	Specify the IP address of the partner node. Example: To specify 192.168.1.2 (<u>C0 A8 01 02H</u>): DTn + 2: 0102H
DTn+3	Partner node IP address (H)	DTn + 3: COA8H This is not necessary when using the Unpassive open mode of TCP.
DTn+4	Partner node port No.	Specify any port number for the partner node other than 0H. (A value of 1025 (401H) or higher is recommended.) This is not necessary when using the Unpassive open mode of TCP.
DTn+5	Partner node MEWTOCOL station number	(Not used)
DTn+6 (lower word)		When using the Active open mode of TCP/IP, if the partner node has no ARP function, specify the Ethernet address of the partner node. In any other case, specify 0H.
DTn+7	Partner node ethernet address	Example: To specify 1.2.3.4.5.6:
DTn+8 (higher word)	emernet address	DTn + 6 0506H DTn + 7 0304H DTn + 8 0102H

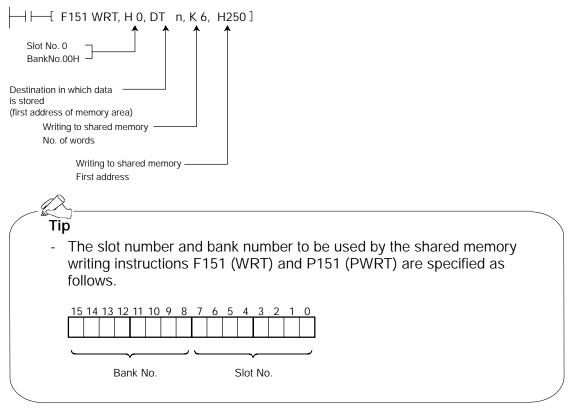
Contents of data settings

next page



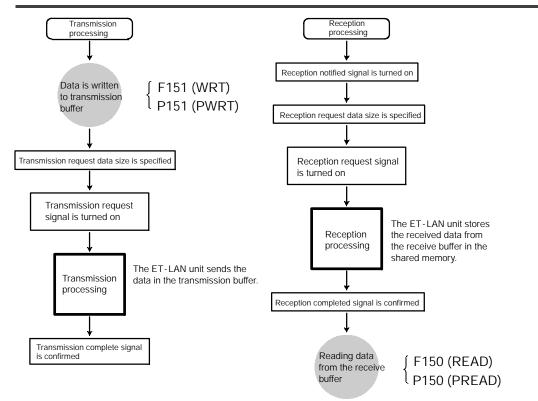
- We recommend specifying a port number of 1025 (401H) or higher.
- When using the Active open mode, if the partner node has no ARP function, specify the Ethernet address of the partner node for "DTn + 6 to DTn + 8".

9.3.2 Writing to the Shared Memory


The specified data is written to the connection information setting area of the shared memory using the shared memory writing instructions F151 (WRT) and P151 (PWRT).

Shared memory address

Program example


If using connection 1 of the ET-LAN unit installed in slot no. 0, the program for writing data to the shared memory would be as follows.

9.4 Communication Processing for Transparent Communication

9.4 Communication Processing for Transparent Communication

9.4.1 Communication Processing Procedure

Transmission processing

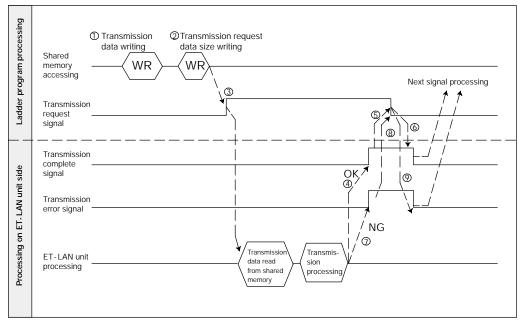
The ET-LAN unit sends data through the communication circuit by writing it to the transmission buffer of the shared memory and then executing the transmission request.

Reception processing

When the ET-LAN unit receives data from the communication circuit, the reception notified signal goes on. If a reception request is executed while this signal is on, the received data is stored in the receive buffer of the shared memory. Data is read from the receive buffer at the timing at which the reception complete signal goes on.

Transmission and receive buffers

The transparent communication buffer area allocations (connections 1 to 3) effective when the unit is shipped from the factory are as shown below. See page 5 - 10.


The first addresses and sizes of the transmission and receive buffers of connections 1 to 8 can be set to any desired values in the 6k words transparent communication buffer area, by changing the contents of the initialization information settings.

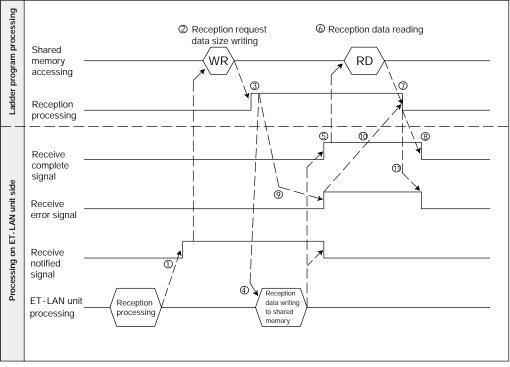
The shared memory addresses indicated below are in word (16-bit) units.

Shared memory	Absolute address	Bank No.	Address	
Absolute	2800H	0AH to	0000H	Receive buffer for Connection 1
address 2800H Transparent	2C00H	0AH 0BH to	03FFH 0000H	(1k words) Transmission buffer for Connection 1
to communication		0BH	03FFH	(1k words)
3FFFH	3000H	0CH to 0CH	0000H 03FFH	Receive buffer for Connection 2 (1k words)
	3400H	0DH to 0DH	0000H 03FFH	Transmission buffer for Connection 2 (1k words)
	3800H	0EH to 0EH	0000H 03FFH	Receive buffer for Connection 3 (1k words)
	3C00H	0FH to 0FH	0000H 03FFH	Transmission buffer for Connection 3 (1k words)

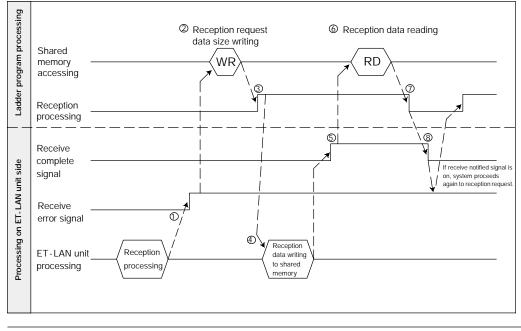
9.4.2 Procedure for Transmission Processing

Transmission processing timing chart

Execution procedure when sending data


- 1) The data to be sent is set in the transmission buffer.
- (2) The size of the data to be sent is set in the transmission request data size parameter in the connection information setting area.
- ③ The transmission request signal is turned on.
- ④ When the transmission processing from the ET-LAN unit to the communication circuit has been successfully completed, the transmission complete signal goes on.
- ⑤ After confirmation has been made that the transmission complete signal is on, the transmission request signal should be turned off.
- (6) When the transmission request signal has been turned off, the transmission complete signal goes off.
- If the transmission processing is not successfully completed for some reason, the transmission error signal goes on.
- (8) To re-try the processing, first turn the transmission request signal off.
- When the transmission request signal goes off, the transmission error signal goes off. Always make sure this has been done before re-sending the data.

Notes


- The transmission request data size in the connection information setting area is specified in byte units, and should be set such that the transmission request data size is less than or equal to the transmission buffer size x 2.
- The next time data is to be sent, always check to make sure the transmission complete signal is off before executing the transmission processing.
- The user is notified of the content of an error by means of a transmission processing end code and an error log.

9.4.3 Procedure for Reception Processing

Reception processing timing chart When the size of the data received is less than or equal to the reception request data size

When the size of the data received is greater than the reception request data size

Procedure when receiving data

When the size of the data received is less than or equal to the reception request data size, the following procedure is used to carry out communication processing.

- ① When data is received from the communication circuit, the receive notified signal goes on.
- (2) The size of the data to be read is written to the reception request data size parameter in the connection information setting area.
- ③ The receive request signal is turned on.
- ④ The received data is sent to the receive buffer in the shared memory.
- 5 The receive complete signal goes on.
- (6) The received data is read from the receive buffer in the shared memory.
- The receive request signal goes off.
- (8) When the receive request signal has been turned off, the receive complete signal goes off.
- (9) If the reception processing is not successfully completed for some reason, the receive error signal goes on.
- 1 If a reception error occurs, the receive request signal goes off.
- (1) When the receive request signal goes off, the receive error signal goes off. Always make sure this has been done before carrying out the reception processing again.

When the size of the data received is greater than the receive request data size, the following procedure is used to carry out communication processing.

(8) Even if the receive request signal goes off, the receive notified signal remains on, so repeat the procedure from step (3), when the receive request signal goes on, to receive the remaining data.

Operation when an error occurs is the same as that which occurs when the size of the data received is less than or equal to the receive request data size.

Tip

- The size of the transparent reception data remaining in the ET-LAN unit is stored in the receive unnotified data size area of the shared memory.
- If the receive unnotified data size matches the receive unnotified data size copy, the size of the remaining data is entered. After the two have been matched, a request for reception of the remaining data should be issued based on this value.

🖛 next page

Notes

- The size of the receive request data should be specified so that it is less than or equal to the size of the receive buffer x 2, and should be specified in byte units.
- 2) The receive complete signal does not go on until the amount of data received is equal to the receive request data size in the connection information setting area.
- 3) If "FFFFH" has been specified for the receive request data size, direct reception is carried out. With direct reception, the receive request signal goes on each time a packet is received.
- 4) If the received data exceeds the receive request data size, the receive data notified signal remains on even after the receive complete signal has gone off. In this case, reception data can continue to be read by turning on the receive request signal again.
- 5) The next time data is to be received, always check to make sure the receive complete signal is off before executing the reception processing.
- 6) The user is notified of the content of an error by means of a receive processing end code and an error log.

9.4.4 Handshake Signal and Data Area

Handshake signals used in transparent communication

The handshake area of the I/O or the shared memory in the unit is used to execute communication processing.

Related to transmission processing

Signal name	Hand- shake	Transmiss	sion reque	st signal bi	it				
	method	Connection 1	Connection 2	Connection 3	Connection 4	Connection 5	Connection 6	Connection 7	Connection 8
Transmis- sion request	Handshake using I/O	Y22	Y26	Y2A	_	_	_		—
signal	Handshake	Bank 0: Add	lress 368H						
	using shared memory	Bit 2	Bit 6	Bit A	-	_	_	_	_
	5	Bank 0: Add	lress 36CH			Bank 0: Add	ress 36DH		
		Bit 2	Bit 6	Bit A	Bit E	Bit 2	Bit 6	Bit A	Bit E
Transmis- sion	Handshake using I/O	X2	X6	ХА	_	_	_	_	_
complete signal	Handshake	Bank 0: Address 360H				—			
	using shared memory	Bit 2	Bit 6	Bit A	_	_	_	_	_
	,	Bank 0: Address 364H				Bank 0: Address 365H			
		Bit 2	Bit 6	Bit A	Bit E	Bit 2	Bit 6	Bit A	Bit E
Transmis- sion error	Handshake using I/O	X3	X7	ХВ	_	_	_	_	_
signal	Handshake	Bank 0: Add	lress 360H			—			
	using shared memory	Bit 3	Bit 7	Bit B	_	_	_	_	_
	,	Bank 0: Add	Iress 364H			Bank 0: Address 365H			
		Bit 3	Bit 7	Bit B	Bit F	Bit 3	Bit 7	Bit B	Bit F

Related to reception processing

Signal name	Hand- shake	Receive n	Receive notified signal bit								
nume	method	Connection 1	Connection 2	Connection 3	Connection 4	Connection 5	Connection 6	Connection 7	Connection 8		
Receive notified	Handshake using I/O	X0	X4	X8		_	—	_			
signal	Handshake	Bank 0: Add	Iress 360H			_					
	using shared memory	Bit 0	Bit 4	Bit 8	_	_	_	_	_		
		Bank 0: Address 364H				Bank 0: Address 365H					
		Bit 0	Bit 4	Bit 8	Bit C	Bit 0	Bit 4	Bit 8	Bit C		
Receive request	Handshake using I/O	Y20	Y24	Y28	_	_	_	_	_		
signal	Handshake	Bank 0: Add	Bank 0: Address 368H								
	using shared memory	Bit 0	Bit 4	Bit 8	_	_	—	_	_		
		Bank 0: Add	lress 36CH			Bank: 0 Address 36DH					
		Bit 0	Bit 4	Bit 8	Bit C	Bit 0	Bit 4	Bit 8	Bit C		

next page

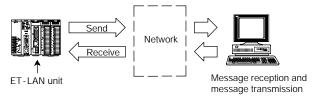
Signal name	Handshake method	Receive notified signal bit								
Receive complete	Handshake using I/O	X1	X5	Х9	_	—	_	_	_	
signal Handshake	Bank 0: Add	Iress 360H			-					
	using shared memory	Bit 1	Bit 5	Bit 9	—	—	—	—	—	
		Bank 0: Address 364H Bank 0: Address 365H								
		Bit 1	Bit 5	Bit 9	Bit D	Bit 1	Bit 5	Bit 9	Bit D	
Receive error	Handshake using shared	Bank 0: Add	Bank 0: Address 366H							
signal	memory	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	

- The I/O number applies when the ET-LAN unit has been installed in slot no. 0.
- Reception error signals are used only when the handshake is carried out using the shared memory.

Data areas used in transparent communication

Name	Connection 1	Connection 2	Connection 3	Connection 4	Connection 5	Connection 6	Connection 7	Connection 8
Transmission	Bank 0:							
request data	Address							
size	25FH	26FH	27FH	28FH	29FH	2AFH	2BFH	2CFH
Transmission processing complete code	Bank 0: Address 2EEH	Bank 0: Address 2FEH	Bank 0: Address 30EH	Bank 0: Address 31EH	Bank 0: Address 32EH	Bank 0: Address 33EH	Bank 0: Address 34EH	Bank 0: Address 35EH
Transmission	Bank 0:							
complete data	Address							
size	2EFH	2FFH	30FH	31FH	32FH	33FH	34FH	35FH

Related to reception processing


Name	Connection 1	Connection 2	Connection 3	Connection 4	Connection 5	Connection 6	Connection 7	Connection 8
Receive	Bank 0:							
request data	Address							
size	25DH	26DH	27DH	28DH	29DH	2ADH	2BDH	2CDH
Reception	Bank 0:							
notified data	Address							
size	2EDH	2FDH	30DH	31DH	32DH	33DH	34DH	35DH
Reception	Bank 0:							
unnotified	Address							
data size	2EBH	2FBH	30BH	31BH	32BH	33BH	34BH	35BH
Reception unnotified data size copy	Bank 0: Address 2ECH	Bank 0: Address 2FCH	Bank 0: Address 30CH	Bank 0: Address 31CH	Bank 0: Address 32CH	Bank 0: Address 33CH	Bank 0: Address 34CH	Bank 0: Address 35CH
Reception processing complete code	Bank 0: Address 2EAH	Bank 0: Address 2FAH	Bank 0: Address 30AH	Bank 0: Address 31AH	Bank 0: Address 32AH	Bank 0: Address 33AH	Bank 0: Address 34AH	Bank 0: Address 35AH

9.5 Sample Program

9.5.1 Sample Program <Initialization to Open>

Program contents

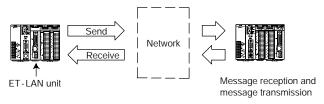
This sample program assumes that the ET-LAN has been installed in slot no. 0.

Internal relay allocation

Classification	Device number	Devices used in program example			
Complete signal	R0 to R1F	RC	Initialization complete signal		
area		RD	Initialization error signal		
		R11	Open error signal (Connection 1)		
Request signal	R40 to R5F	R4C	Initialization request signal		
area		R50	Open request signal (Connection 1)		

Data register allocation

Classification of processing	Device number	Setting item	Setting for program example
Initialization processing	DT10 to DT11	Source node IP address	192. 168. 1. 1 (COA80101H)
	DT12	Communication function setting between networks	Not used
	DT13	Source node MEWTOCOL station number	01 <dummy setting=""></dummy>
Open processing	DT20	Open method	Transparent communication TCP/IP Active open
	DT21	Source node port No.	5000
	DT22 to DT23 Partner node IP address		192. 168. 1. 2 (C0A80102H)
	DT24	Partner node port No.	5000


R9010 Always on relay		, H 360 , WR 4 Request signal ar	, Н2 , Н2 ea	, WR 0 Complete signal a , H 368]— — ^{Irea}]— —	Allocation of complete signal area (R0 to R1F) Allocation of request signal area (R40 to R5F)	Allocation of handshake area for internal relays
R9013 F1 DMV Initialization pulse relay F0 MV F0 MV F151 WRT R9014 RD Initialization error Initialization pulse relay RD P150 PREA Initialization error signal	, H 0 , H 1 , H 0	1101, DT 10 , DT 12 , DT 13 , DT 10] — —]— — , к4	, H 200	— — — — — — — —]— — — R4C _ [] 	 Source node IP address = 192. 168. 1. 1 (COA80101H) Communication between networks not used Dummy setting (source node MEWTOCOL station no.) Writing to initialization information setting area Initialization request Error code read if processing ends in error (reading of initialization information notified area) 	Initialization processing
R9013 F0 MV Initialization pulse relay F0 MV F1 DMV F0 MV F151 WRT RC R11 Open error sign. Initialization complete sig R11 Open error signal	, K 5000 , H 0 al inal	, DT 20 , DT 21 0102, DT 22 , DT 24 , DT 20) ——) ——) —— , к5	, H 250 Open re	 equest signal 	 Selects transparent communication, TCP/IP Active Source node port No. = 5000 Partner node IP address = 192. 168. 1. 2 (C0A80102H) Partner node port No. = 5000 Writing to communication information setting area Open request for connection 1 (after initialization processing has been completed) Error code read if processing ends in error (reading of connection information notified area) 	Open processing Transparent communication

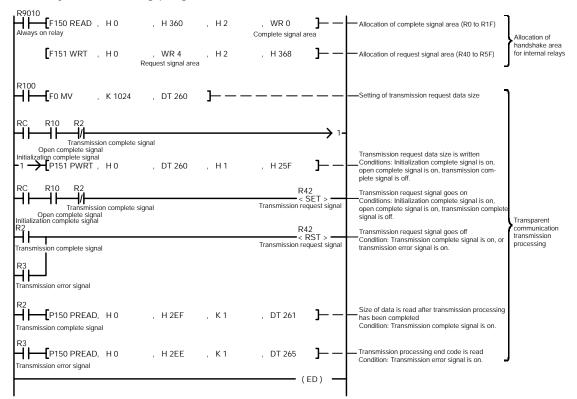
Program example

9.5.2 Sample Program < Transmission Processing and Reception Processing>

Program contents

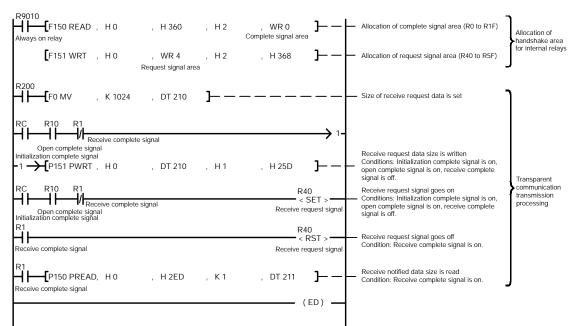
In this sample program, the ET-LAN has been installed in slot no. 0, and transmission or reception of data is being carried out after initialization to open processing has been completed.

Internal relay allocation


Classification	Device number	Devices used in program example			
Complete signal	R0 to R1F	R1	Receive complete signal		
area		R2	Transmission complete signal		
		R3	Transmission error signal		
		RC	Initialization complete signal		
		R10	Open complete signal		
Request signal	R40 to R5F	R40	Receive request signal		
area		R42	Transmission request signal		

Data register allocation

Classification of processing	Device number	Setting item	Setting for program example
Reception processing	DT210	Receive request data size	1,024 words
Transmission	DT260	Transmission request data size	1,024 words
processing	DT261	Transmission processing complete data size	—
	DT265	Transmission error code	—


Transmission processing

After the data being transmitted has been written to the transmission buffer of the shared memory, the following program is run.

Reception processing

After the following program has been run, the received data is read from the receive buffer.

9.5.3 Sample Program <Reception to Transmission>

Recieve data Transfer the received data to the transmission buffer Transmit data R100 Receive request data size set ┥┝ -[FO MY H FFFF DT 10 1 (direct receive) Receive request data size writing [F151 WRT , Η Ο DT 10 H 1 H 25D] R100 R40 R1 Receive request signal on **SET** R3 When the receive complete signal goes on: R1 ├---[P150 READ , H O H 2ED H 1 DT 11] Read the receive notification data size [P151 WRT ,]-Η Ο DT 11 H 1 H 25F Write to the transmission request data size Read the received data [P150 READ , H AOO H 0 H 400 DT 1000] [P151 WRT , H B00 DT 1000 , H 400 H 0] Write to the transmission buffer R1 R40 When the receive complete signal goes +(RST) on the receive request signal goes off When the receive complete signal goes R1 R42 on the transmit request signal goes on (SET) R2 |-| | R3 |-| R42 When the transmit complete signal goes on the transmit request signal goes off <RST.

Program example for transmitting received data as it is

next page

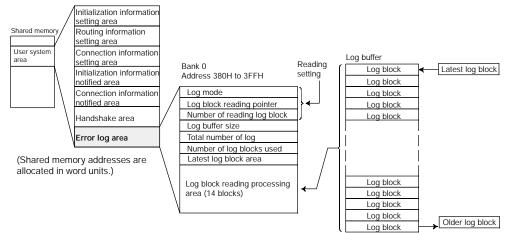
- This applies when the default allocations are used for the transmission buffers.
- For this example, the ET-LAN unit has been installed in slot 0.

Internal relay allocation

Classification	Device number	Devices used in program example		
Complete signal	R0 to R1F	R1	Receive complete signal	
area		R2	Transmission complete signal	
		R3	Transmission error signal	
Request signal	R40 to R5F	R40	Receive request signal	
area		R42	Transmission request signal	

Chapter 10

Error Log Function


10.1	Configu	ration of the Error Log Area 10 - 3
	10.1.1	What is the Error Log Function? 10 - 3
	10.1.2	Contents of Error Log Area 10 - 5
10.2	Reading	g the Error Log 10 - 7
	10.2.1	Procedure for Reading the Error Log 10 - 7
	10.2.2	Sample Program 10 - 9
10.3	Error C	ode Contents 10 - 10
	10.3.1	Access Error 10 - 10
	10.3.2	System Error 10 - 15
	10.3.3	Warning Error 10 - 16
	10.3.4	Recovery Possible Error 10 - 17

10.1 Configuration of the Error Log Area

10.1.1 What is the Error Log Function?

- The ET-LAN unit is equipped with a log buffer where hardware and communication errors that occur in the unit are recorded.
- The contents of the log buffer are read by using the shared memory access instructions F150 (READ) and P150 (PREAD) and F151 (WRT) and P151 (PWRT) to read from and write to the error log area of the shared memory.

Configuration of the error log area

Latest log block area

Address	Description
388H	Connection No. (See note.)
389H	Error code
38AH to 38FH	Reserved (Used by the system.)

Note: If no connection number is specified, 0 will be set.

Log block reading processing area

Address	Description	
390H	Connection No. (See note.)	ר
391H	Error code	
392H to 397H	Reserved (Used by the system.)	(Latest log block)
398H to 39FH	Same configuration as 390H to 397H	
3A0H to 3A7H	Same configuration as 390H to 397H	
3A8H to 3AFH	Same configuration as 390H to 397H	
3B0H to 3B7H	Same configuration as 390H to 397H	
3B8H to 3BFH	Same configuration as 390H to 397H	
3C0H to 3C7H	Same configuration as 390H to 397H	
3C8H to 3CFH	Same configuration as 390H to 397H	
3D0H to 3D7H	Same configuration as 390H to 397H	
3D8H to 3DFH	Same configuration as 390H to 397H	
3E0H to 3F7H	Same configuration as 390H to 397H	
3E8H to 3EFH	Same configuration as 390H to 397H	
3F0H to 3F7H	Same configuration as 390H to 397H	
3F8H to 3FFH	Same configuration as 390H to 397H	(Older log block)

Note: If no connection number is specified, 0 will be set.

10.1.2 Contents of Error Log Area

Error log area (bank 0)

Address	Name	Explanation					
380H	Log mode	[Set value] [Default value: 0003H]					
	0	The recorded error differ	s depend	ing on the	set value.		
		Set value	0	1	2	3	
		System error	0	0	0	0	
		Recovery possible error	—	0	0	0	
		Warning error	—	—	0	0	
		Acces error	—	—	—	0	
381H	Log block reading pointer	[Set value] Offset from latest log bl - To read the latest log block, "0" it "Number of log blocks used - 1" should be set such that the num to the log block reading pointer - thing else is specified, the result	s specified is specified ber of log + the num	d. To read ed (see 38 blocks use ber of log l	the oldest 7H below) ed is greate	log block used, . This value er than or equal	
382H	Number of reading log block	 [Set value] No. of reading blocks [I This specifies the number of bloc block reading point. A value of 14 or less should be s set, 14 blocks will be read. 	cks up to t	the old blo	ck to be re	Ū.	
383H 384H	Reserved (Used by th	the system.)					
385H	Log buffer size	[Stored value] Log buffer size available with the unit itself (number of log blocks) [Set value: 0100H (256 blocks)] - This is set by the unit itself when it boots.					
386H	Total number of log	 [Stored value] Cumulative total of leing This is cleared to 0 when initializ The number of logs is counted u made to record more logs than v overwritten, starting with the olde The number of logs will not be in 	ation prod p to FFFF vill fit into est.	cessing is H (65535) the availal	carried out), but if an ble buffer s	t. attempt is space, logs are	
387H	Number of log blocks used	 [Stored value] Current number of log blocks available for reading in log buffer This is cleared to 0 when initialization processing is carried out. The count of the number of logs used will not be incremented past the buffer size. 					
388H to 38FH	Latest log block area (8 words)	 [Stored value] Latest log information The unit itself updates the contents constantly, so information can be read using the shared memory access instructions F150 (READ) and P150 (PREAD), without issuing a read request. This is cleared to 0 when initialization processing is carried out. 					
390H to 3FFH	Log block reading processing area (8 words × 14 blocks)	 [Stored value] Data read during log Up to 14 blocks are stored in the when a read request is issued (t shake area in the I/O or shared read in the I/O or shared read in the I/O or shared read to 0 when initialized to 0 when	e log, in the he error lo memory g	e order in v og notified oes on).	which the e request bi	t of the hand-	

next page

Notes

- 1) Addresses 380H to 382H should be set before the error log notified request is issued.
- 2) The ET-LAN unit writes the latest values to addresses 385H to 38FH.
- 3) The ET-LAN unit writes values to addresses 390H to 3FFH after the error log notified request has been issued.

10.2 Reading the Error Log

10.2.1 Procedure for Reading the Error Log

Reading the latest log block

The latest log block area in the error log area of the shared memory is read.

The unit itself updates the contents of the latest log block area constantly, so it is not necessary to turn on the error log notified request signal.

Contents of the latest log block

Address	Description
388H	Connection No. (See note.)
389H	Error code
38AH to 38FH	Reserved (Used by the system.)

Note: If no connection number is specified, 0 will be set.

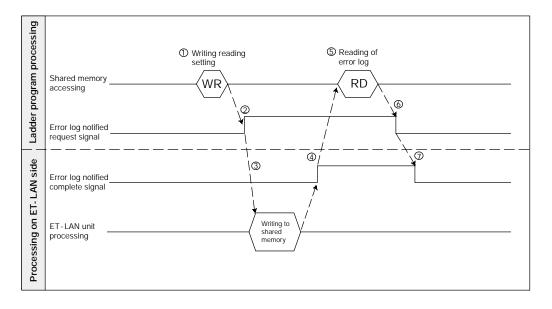
Reading a particular log block

① The following area is set in the error log area of the shared memory.

Address	Item
380H	Log mode
381H	Log block reading pointer
382H	Number of reading log block

2 The error log notified request signal is turned on.

- If the handshake is carried out through the I/O, Y2F is turned on.
- If the handshake is carried out through the shared memory, bit F of address 368H in the request signal area (bank 0) is turned on.
- ③ The error log is sent to the shared memory.


④ Check to make sure the error log notified complete signal is on.

- If the handshake was carried out through the I/O, make sure that XF is on.
- If the handshake was carried out through the shared memory, make sure that bit F of address 360H in the complete signal area (bank 0) is on.

next page

10.2 Reading the Error Log

- (5) Read the log block read processing area (from addresses 390H) in the error log area of the shared memory.
- (6) The error log notified request signal is turned off.
- ⑦ The error log notified complete signal is turned off. If the next error log is to be read, always check to make sure that this error log notified complete signal has gone off.

10.2.2 Sample Program

The sample program applies when the ET-LAN unit has been installed in slot no. 0. This program reads the error log information to data registers DT60 to DT75.

				0			0	
R9010 Always	-F150 READ on relay	, HO	, H 360	, H 2	, WR 0 Complete signal area	<u>) </u>	 Allocation of complete signal area (R0 to R1F) 	Allocation of handshake area
R9013	F151 WRT	, НО	, WR 4 Request signal area	, H 2	, H 368	<u>} </u>	 Allocation of request signal area (R40 to R5F) 	for internal relays
HH	- E FO MV	, НЗ	, DT 50]— —			- Log mode=3	1
Initializa	TF0 MV	, H1	, DT 51]— —			Log block reading pointer=1: — Reads starting from error code just prior from most recent value	Error log infor- mation reading
	F0 MV	, Н7	, DT 52] — –		- — —	 Number of reading log block=7 	setting
	F151 WRT	, НО	, DT 50	, КЗ	, H 380	<u>} </u>	 Writes the reading setting to the error log area 	ļ
R1	RF Error log notifi complete signal	ed complete	signal		Error log notified req	R4F	Error log notified request	
RF 	P150 PREAD		, H 388	, K 2	, DT 60	J— —	 Reads the error code of the most recent log 	
	P150 PREAD	, H0	, H 390	, K 2	, DT 62	<u>) </u>	 Reads the first error code after the most recent 	
	P150 PREAD	, НО	, H 398	, K 2	, DT 64)— —	 Reads the second error code after the most recent 	Error log infor- mation reading
	P150 PREAD	, HO	, H 3A0	, K 2	, DT 66)— —	 Reads the third error code after the most recent 	· ····································
	P150 PREAD	, H0	, H 3A8	, K 2	, DT 68	<u>} </u>	 Reads the fourth error code after the most recent 	
	P150 PREAD	, HO	, H 3B0	, K 2	, DT 70)— —	 Reads the fifth error code after the most recent 	
	P150 PREAD	, HO	, H 3B8	, K 2	, DT 72	<u>} </u>	 Reads the sixth error code after the most recent 	
	P150 PREAD	, H0	, H 3C0	, K 2	, DT 74	<u>} </u>	 Reads the seventh error code after the most recent 	l.
I							I	

Internal relay allocation

Classification	Device number	Devices used in sample program		
Complete signal	R0 to R1F	R1 Receive complete signal		
area		RF Error log notified complete signal		
Request signal area	R40 to R5F	24F Error log notified request signal		

10.3.1 Access Error

This error code notifies the user that processing ended abnormally. (The addresses indicated in the Description column is the address of bank 0 unless refused.)

Code	Name	Description	Step to take	Remark
8000H	Source node IP address error	OH or FFFFFFFH was set for the source node IP address during initialization processing.	Correct the source node IP address.	Initialization processing end code
8001H	Subnetwork masking error	The uppermost 2 bits of the sub-network mask field have not been set, or a value of FFFFFFD or higher was set.	Correct the sub-network mask value.	These are also stored in address 2D0H of the initiali-
8002H	Default router (Gateway) IP address error	OH or FFFFFFFH was set for the default router (gate- way) IP address, or an ad- dress was set that does not match the source node net- work IP address.	Correct the IP address of the default router (gateway).	zation processing end code of the init- ialization informa- tion notified area. The E1 LED on the front panel of the
8003H	Router subnetwork address error	OH or FFFFFFFH was set for the router sub-network address.	Correct the router sub-net- work address.	ET-LAN unit lights.
8004H	Router IP address error	OH or FFFFFFFH was set for the router IP address, or an address was set that does not match the source node network IP address.	Correct the router IP ad- dress.	
8005H	Transparent communication buffer error	An error in the first address or size setting for the transparent communication buffer caused a duplication in the buffer area, or caused the available area to be exceeded.	Correct the first address or size of the transparent com- munication buffer.	
8007H	Initialization processing error	An error occurred when the ET-LAN unit was carrying out initialization processing.	Run the initialization proc- essing again.	
8008H	Termination processing error	An error occurred when the ET - LAN unit was carrying out termination processing.	Run the termination process- ing again.	
800AH	Source node MEWTOCOL station number error	A value other than 1 to 64 was set for the source node MEWTOCOL station number.	Correct the source node MEWTOCOL station number.	

Code	Name	Description	Step to take	Remark	
8010H	Open error	An attempt was made to exe- cute open processing al- though initialization process- ing was not completed suc- cessfully.	Run the open processing af- ter the initialization process- ing has been completed.	Open processing end code These are also stored in offset ad-	
8011H	Application use error	A setting other than Active, Fullpassive, or Unpassive was entered when using TCP/IP (not applicable if UDP/IP is be- ing used).	Correct the setting area for the application being used.	dress 0 of the open processing end code of the connec- tion information no- tified area.	
8012H	Source node port No. error	0 was set for the source node port number during open proc- essing.	Correct the source node port number.		
8013H	Partner node port No. error	0 was set for the partner node port number in a mode other than TCP/IP Unpassive, during open processing.	Correct the partner node port number.		
8014H	Partner node IP address error	 During open processing: With UDP/IP, 0 was set for the partner node IP ad- dress. OH or FFFFFFFH was set for the partner node IP address in a mode other than TCP/IP Unpassive. 	Correct the IP address of the partner node.	Open processing end code These are also stored in offset ad- dress 0 of the open processing end code of the connec-	
8015H	UDP/IP source node port number duplication error	The same source node port number was set in UDP/IP as that of a source node port that is already open.	Specify a different source node port number.	tion information no- tified area.	
8016H	TCP/IP source node port number duplication error	The same source node port number was set in TCP/IP as that of a source node port that is already open.	Specify a different source node port number.		
8017H	Memory error	The connection cannot be opened because not enough memory is available.	Run the open processing again. If the error still occurs, run the initialization process- ing once again.		
8018H	No partner node error	The connection cannot be opened because the transmis- sion destination of the speci- fied partner node IP address and port number cannot be found, or a communication er- ror occurred.	Check the transmission line connection, the IP address of the partner node, and the port number of the partner node.		
801AH	Forced close error	The connection was forcibly closed because the initialization request signal went off.	Turn the initialization request complete signal off after close processing has been com- pleted.		
801BH	Destination MEWTOCOL station number setting error	A value other than 1 to 64 was set for the MEWTOCOL station number of the partner node.	Correct the MEWTOCOL station number of the partner node.		

🖛 next page

Code	Name	Description	Step to take	Remark	
8020H	Transparent communication transmission error	In transparent communication, an attempt was made to exe- cute transmission processing although initialization process- ing was not completed suc- cessfully.	Carry out transmission proc- essing after initialization and open processing have both been completed.	Transmission processing end code These are also stored in offset ad-	
8021H		In transparent communication, an attempt was made to send data to a partner node for which open processing has not been completed.		dress E of the transmission proc- essing end code of the connection in- formation notified area.	
8022H		In transparent communication, an attempt was made to send data for which the transmis- sion request data size is 0.	Correct the transmission re- quest data size.		
8023H		In transparent communication, the specified transmission re- quest data size exceeded twice the size of the transmis- sion buffer.	Correct the transmission re- quest data size.		
8024H		In transparent communication, data could not be sent be- cause the connection had been closed.	Send data to a partner node for which a connection is open.		
8025H	Transparent communication reception error	In transparent communica- tion, an attempt was made to execute reception processing although initialization proc- essing was not completed successfully.	Carry out reception process- ing after initialization and open processing have both been completed.	Reception proc- essing end code These are also stored in offset ad-	
8026H		An attempt was made to re- ceive data from a partner node for which open processing has not been completed, using transparent communication.		dress A of the re- ception processing end code of the connection informa- tion notified area.	
8027H		In transparent communica- tion, an attempt was made to receive data although there was no reception buffer avail- able.	When receiving data, the transparent communication reception buffer area must be specified for the pertinent con- nection (this setting becomes valid when the initialization processing is executed).		
8028H		In transparent communica- tion, an attempt was made to receive data although the re- ception request data size was set to 0.	Correct the reception request data size.		

Code	Name	Description	Step to take	Ren	nark
8030H	MEWTOCOL transmission error	In MEWTOCOL commu- nication, an attempt was made to send data al- though initialization processing had not been completed.	Carry out transmission processing after initiali- zation and open proc- essing have both been completed.	33	The value at the left has been set for the trans- mission completed code of the MEWTOCOL transmission control block.
8031H		An attempt was made to send a MEWTOCOL transmission to a partner node which had not been opened using MEWTOCOL.		55	
8032H		In MEWTOCOL commu- nication, a transmission error occurred because the connection was clo- sed.	Send data to a partner node for which a con- nection is already open.	39	
8033H		An error occurred when sending data because of a format error in the MEWTOCOL commu- nication. A packet speci- fied a hierarchy level (LEVEL) or 8 or more packets.	Run the MEWTOCOL transmission again.	24	
8034H		An error occurred when sending data because of a format error in the MEWTOCOL commu- nication. A packet speci- fied a hierarchy depth (DEPTH) of 8 or more packets.	Run the MEWTOCOL transmission again.	24	
8035H		An error occurred when sending data because of a format error in the MEWTOCOL commu- nication. A packet speci- fied a message data size of 2,049 or more.	Run the MEWTOCOL transmission again.	35	
8036H		An error occurred when sending data because of a format error in the MEWTOCOL commu- nication. A packet was received that specified a value other than 10H, 11H, 20H, or 21H as the first value.	Run the MEWTOCOL transmission again.	27	
8040H	Forced close error	The connection was forci- bly closed by the partner node, or a transmission error occurred and the source node forcibly closed the connection.	Check the transmission line connection and the status of the partner node.	_	

next page

Code	Name	Description	Step to take	Remark
8041H	MEWTOCOL reception error	A packet containing an error in the MEWTOCOL communication format was received. A packet with a hierarchy level (LEVEL) of 8 or higher was received.	Correct the setting for the node to which the MEWTOCOL commu- nication was sent (format content, MEWTOCOL station number, etc.)	The connection will be forcibly closed.
8042H		A packet containing an error in the MEWTOCOL communication format was received. A packet with a hierarchy depth (DEPTH) of 8 or higher was received.		
8043H		A packet containing an error in the MEWTOCOL communication format was received. A packet with a message data size of 2,049 or more was re- ceived.		
8044H		A packet containing an error in the MEWTOCOL communication format was received. A packet was received that speci- fied a value other than 10H, 11H, 20H, or 21H as the first value.		
8045H		The received MEWTO- COL communication was not directed to the source node MEWTOCOL sta- tion number.		
8046H		The destination station number of the received MEWTOCOL commu- nication was not a value of 1 to 64.		
8047H		A frame was received for a partner node MEW- TOCOL station number for which no connection has been opened.		

10.3.2 System Error

This error code notifies the user if a critical system error has occurred. If this error occurs, the E2 LED on the front panel of the ET-LAN unit lights.

Code	Name	Description	Step to take	Remark
9001H	System error during normal operation	A watchdog error oc- curred (the ALARM LED is lighted).	The unit has run away. Turn the power supply off and then on again.	These are system errors that can occur during normal opera- tion. If one of these errors oc- curs, the E2 LED on the front
9002H		The unit transmission section sent notification of a memory access error.	Turn the power supply off and then on again.	panel of the ET-LAN unit lights.
9003H		There is no longer enough buffer space available in the applica- tion processing.		
9004H		There is no longer enough buffer space available in the protocol processing.		
9005H		The EEPROM Ethernet address cannot be read successfully.		
9006H		The CPU unit has run away, or a version of the CPU unit is being used that is not supported by the ET-LAN unit, so the CPU unit cannot be re- cognized.	Problem with the CPU unit Check the "contents of the ALARM LED" on the page 11 - 3. Check the CPU unit ver- sion.	
9010H	Test mode execution results	An error was discovered during the ROM test.	Turn the power supply off and then on again.	These are errors that occur dur- ing test operation. If one of these
9011H		An error was discovered during the RAM test.		errors occurs, the E2 LED on the front panel of the ET-LAN unit lights.
9012H		An error was discovered during the shared memory test.		U U U U U U U U U U U U U U U U U U U
9013H		An error was discovered during the EEPROM checksum test.		
9014H		An error was discovered during the internal loop- back test.		
9015H		An error was discovered during the external loop- back test.	Check the transmission line connections.	
9016H		An error was discovered during the timer test.	Turn the power supply off and then on again.	

10.3.3 Warning Error

This error code does not indicate a system error, but alerts the user to a certain condition or status.

If this error occurs, the E2 LED on the front panel of the ET-LAN unit flashes.

Code	Name	Description	Step to take	Remark
B003H	No reception buffer. Data has been de- stroyed at the con- nection destination.	In transparent commu- nication, data was sent to a connection with a trans- parent communication re- ception buffer size of 0, so the data was destroyed.	To receive the data, specify a transparent communica- tion reception buffer area for the pertinent connection (this setting becomes effec- tive when initialization proc- essing is carried out).	LED on the front panel of the

10.3.4 Recovery Possible Error

These error codes are displayed if an error occurs in the communication control unit. If one of these errors occurs, the E1 LED on the front panel of the ET-LAN unit flashes.

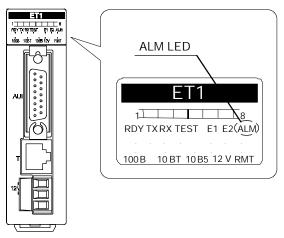
Code	Name	Description	Step to take	Remark
A001H	UDP check sum error	The checksum value of the UDP packet received from the partner node is erroneous.	Send the data once again from the partner node.	If any of these errors occur, the E1 LED on the front panel of the ET-LAN unit flashes.
A002H	UDP/IP level error	Communication processing was carried out with a dif- ferent port number than the one registered for UDP.	Carry out the communica- tion processing with the correct port number.	
A003H	Transmission error	This error indicates that a notification was received from the transmission section of the unit.	Carry out the transmission processing again.	
A004H	IP processing error	 Error notification was received from the IP. Assembly timeout error: During assembly of the IP split data, the remaining data was not received within the allowed time limit. Specified IP address does not exist: There was no response to an ARP request for the specified IP address of the partner node. Checksum error: This notification is re- ceived if the IP header checksum value of an IP packet that has been re- ceived if the IP neader checksum value of an IP packet that has been re- ceived if the IP resource is insufficient. Internal resource error: This notification is re- ceived if the IP resource is insufficient. Different IP address was specified for sub-network address from that of source node This notification is re- ceived if the IP address specified for the partner node is different from that of the source node. This does not occur if a router address was specified, however. 	Carry out the transmission processing again.	

🖛 next page

Code	Name	Description	Step to take	Remark
A005H	TCP/IP processing error	 Error notification was received from TCP. No connection established: This notification is received if an attempt was made to request transmission or reception without a TCP connection being established. Connection closed: This notification is received if an attempt was made to request transmission or reception while a close request was in process after the connection was established. Connection already established. Internal resource node port number, partner node port number, partner node port number, and partner node IP address, after a connection has been established. Internal resource error: Successive TCP transmission requests are made without a response being returned. Checksum error: This notifies the user that, when a TCP packet was received, the checksum value was incorrect. ULP timeout error: This notifies the user that, when a TCP packet was re-sent, a normal response was not returned by the destination within a given period of time. 	Carry out the transmission processing again.	If any of these errors occur, the E1 LED on the front pan- el of the ET-LAN unit fla- shes.

Troubleshooting

11.1	Operatio	on If an Error Occurs 11 - 3
	11.1.1	<i>Operation If the ALARM LED on the ET-LAN</i> <i>Unit Lights</i>
	11.1.2	<i>Operation If the "E1" or "E2" LED on the ET-LAN Unit Lights or Flashes</i>
11.2	What to	Do If an Error Occurs
	11.2.1	If the Alarm "ALM" LED Lights on the ET-LAN Unit
	11.2.2	If the "E1" LED on the ET-LAN Unit Lights or Flashes
	11.2.3	If the "E2" LED on the ET-LAN Unit Lights or Flashes
	11.2.4	Troubleshooting Flowchart


11.1 Operation If an Error Occurs

11.1 Operation If an Error Occurs

11.1.1 Operation If the ALARM LED on the ET-LAN Unit Lights

What the Alarm "ALM" LED does

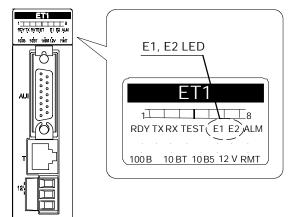
The alarm "ALM" LED on the ET-LAN unit lights if the watchdog timer in the unit is activated, to warn of a problem.

CPU unit operation when the Alarm "ALM" LED lights

- The ERROR LED on the CPU unit lights, and operation stops.
- The error code to be checked using programming tools or other means is 41 (intelligent unit error).

If it is necessary to continue operation, change the setting of the CPU unit system register 22.

11.1 Operation If an Error Occurs


11.1.2 Operation If the "E1" or "E2" LED on the ET-LAN Unit Lights or Flashes

How the ERROR LEDs work

The ERROR LEDs on the ET - LAN unit light or flash when an error occurs in the unit itself, or when a communication error occurs.

There are two ERROR LEDs, "E1" and "E2", which indicate the following statuses.

- "E1" flashing: Recovery possible error
- "E1" lighted: Initialization processing error
- "E2" flashing: Warning error
- "E2" lighted: System error

Unit operation if an ERROR LED lights/flashes

ERROR LED status	ET-LAN unit operation	CPU unit operation
When "E1" is flashing	Operation is continued.	Operation is continued.
When "E1" is lighted	Operation is continued.	Operation is continued.
When "E2" is flashing	Operation is continued.	Operation is continued.
When "E2" is lighted	This notifies the user of a run away unit, or another problem involving the unit. Normal operation cannot be continued.	 If the "ALM" LED is lighted, operation is stopped. In any other case, operation is continued.

Note

The "E2" LED also lights if an error occurs in the transmission line during an external loopback test.

11.2 What to Do If an Error Occurs

11.2.1 If the Alarm "ALM" LED Lights on the ET-LAN Unit

Situation

The watchdog timer is activated to alert the user of a problem with ET-LAN unit.

Solution

- Turn the power supply off and then on again.
- If the "ALM" LED lights again, there may be a problem with the unit.
- If the "ALM" LED goes out after the power supply is turned off and then on again, the problem may have been caused by noise or another temporary phenomenon. Continue operation and watch for further signs of trouble.

11.2.2 If the "E1" LED on the ET-LAN Unit Lights or Flashes

Situation

Lighted: Initialization, open, or communication processing was completed, but an error occurred.

Flashing: An error occurred in the communication control unit.

Solution 1

Use the error log reading program to read the error log. (See page 10 - 7.)

Solution 2

Take the appropriate action, based on the contents of the error log. (See page 10 - 10.)

Tip

The following will cause aborted processing:

- An incorrect IP address setting or station number setting
- Processing was not carried out in the sequence of initialization \rightarrow open \rightarrow communication processing.
- The MEWTOCOL communication format was incorrect.

11.2.3 If the "E2" LED on the ET-LAN Unit Lights or Flashes

Situation

Lighted: A system error has occurred in the ET-LAN unit itself.

Flashing: Something has occurred to which the user should be alerted, because it may be a potential problem.

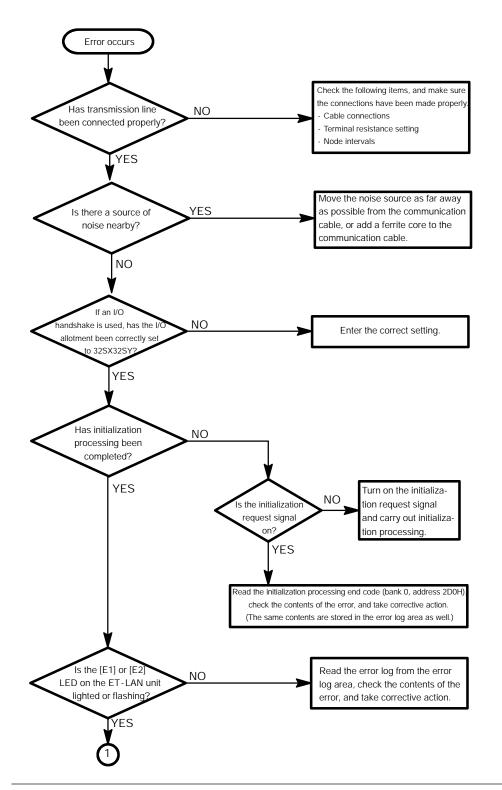
Solution 1

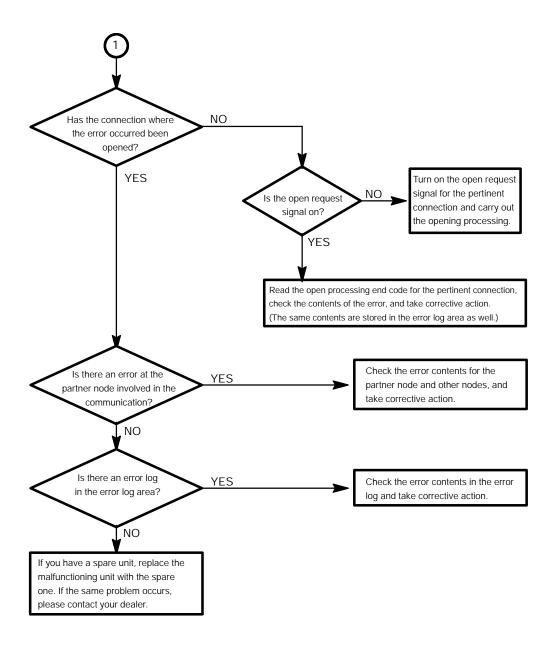
Use the error log reading program to read the error log. (See page 10 - 7.)

Solution 2

Tip

Take the appropriate action, based on the contents of the error log. (See page 10 - 10.)


If a system error has occurred, turn the power supply off and then on again. If the error still occurs, please contact your dealer.


The "E2" LED will also light in the following cases:

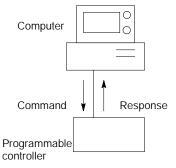
- If the "ALM" LED is lighted
- If an error occurred in a test mode

Tip
The error log can be read using the programming tools and the following pro- cedure.
① On the "Tools" menu, select "Force Input/Output Function".
② Forcibly turn on the error log notified request signal (Y2F) and then turn it off again.
This reads the error log into 390H and subsequent addresses of the shared memory.
The I/O number for Y2F changes depending on the position at which the unit is installed.
When the shared memory is used for the handshake, the relay that reflects the error log notified request signal should be used.
③ Cancel the force input/output status.
④ On the "Tools" menu, select "Display PLC Shared Memory".
This reads the "PLC".
(5) Specify a slot number and specify 3F8H as the address.
6 The log information is read.

11.2.4 Troubleshooting Flowchart

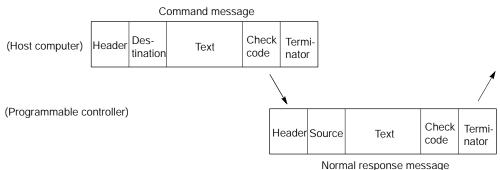
Chapter 12

MEWTOCOL Communication Procedure


12.1	MEWTO	OCOL-COM (Computer Link)	12 - 3
	12.1.1	Overview of MEWTOCOL - COM	12 - 3
	12.1.2	Single Frames and Multiple Frames	12 - 7
	12.1.3	List of MEWTOCOL - COM Commands	12 - 9
12.2	MEWTO	OCOL-DAT (Data Transfer)	12 - 29
	12.2.1	Overview of MEWTOCOL-DAT	12 - 29
	12.2.2	List of MEWTOCOL - DAT Commands	12 - 31
12.3	MEWTO	OCOL Error Codes	12 - 35
	12.3.1	Table of Error Code	12 - 35

12.1 MEWTOCOL-COM (Computer Link)

12.1.1 Overview of MEWTOCOL-COM


Command and response functions

The computer sends commands (instructions) to the programmable controller, and receives responses in return. This enables the computer and programmable controller to converse with each other, so that various kinds of information can be obtained and provided.

A user program is required on the computer side in order to carry out a computer link. No program is necessary on the programmable controller side.

Command and response formats

Dedicated procedures and conversational formats are used. Transmissions are made by sending ASCII codes (see page 13 - 48). The computer has the first right of transmission, and the right of transmission then shifts each time a message is sent.

Notes

• With MEWTOCOL communication through an ET-LAN unit, a format is used in which the special header shown below is added to MEWTOCOL-COM commands and responses.

Special header for ET-LAN unit	MEWTOCOL command/response

• The content of the special header changes depending on the communication conditions.

Name	Character	ASCII code	Explanation
Header	% or <	25H or 3CH	Indicates the beginning of a message.
Command	#	23H	Indicates that the data comprises a command message.
Normal response	\$	24H	Indicates that the data comprises a normal response message.
Error response	ļ	21H	Indicates that the data comprises a response message when an error occurs.
Terminator	с _R	0DH	Indicates the end of a message.
Delimiter	& (+ ^C _{R)}	26H	Indicates a delimiter that splits data into multiple frames.

Destination and source AD (H), (L)

Two-digit decimal 01 to 32 (ASCII codes)

Command messages contain a unit number for the programmable controller that receives the message. Response messages contain the unit number of the programmable controller that is sending the response.

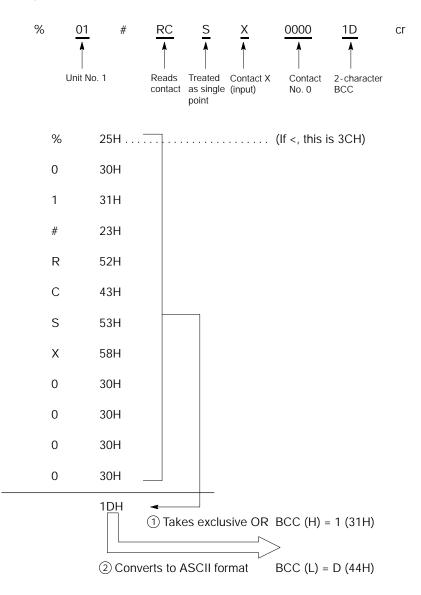
(H) indicates the upper digit and (L) the lower digit. If there is no particular value to be specified, "01" should be set.

When FF (ASCII code table) is used, however, the transmission is a global transmission (sent to all units at once).

Note) When a global transmission is sent, no response to the command message is returned.

Block check code BCC (H), (L)

Two-digit hexadecimal 00 to FF (ASCII codes)


These are codes (horizontal parity) that are used to detect errors in the transmitted data. If "**" is entered instead of "BCC", however, messages can be transmitted without the BCC. In this case, the BCC is included with the response.

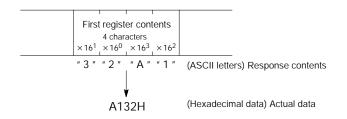
Error code Err (H), (L)

Two-digit hexadecimal 00 to FF (ASCII codes) These indicate the contents if an error occurs.

BCC (Block Check Code)

- The BCC is a code that carries out an error check using horizontal parity, to improve the reliability of the data being sent.
- The BCC uses an exclusive OR from the header (%) to the final character of the text, and converts the 8-bit data into a 2-character ASCII code.

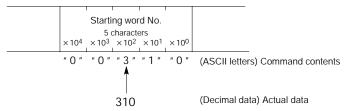
Example


How data is notated in commands and responses

Data used in commands and responses can be notated in the three ways described below.

Hexadecimal data

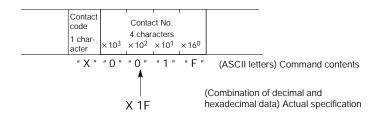
 $x16^0$ and $x16^1$ to indicate hexadecimal data.


(Example) Register contents in a data area read (RD) response

Decimal data

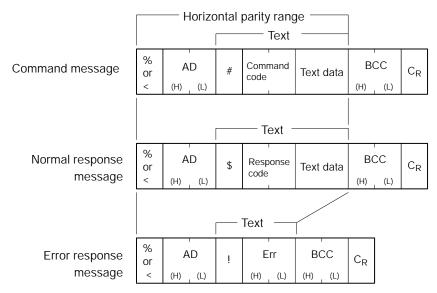
 $x10^0$ and $x10^1$ to indicate decimal data.

(Example) Initial word contents in a data area read (RD) command


Decimal - hexadecimal data

In the relay numbers for external input (X), external output (Y), internal relays (R), and link relays (L), the last digit is in hexadecimal notation, while the preceding digits are in decimal notation. (In T/C contact numbers, all of the digits, including the last digit, are in decimal notation.)

In this case, the notation would read as follows:


x16⁰, x10¹, x10² to

(Example) Specification of command contact of contact area lead (RCS)

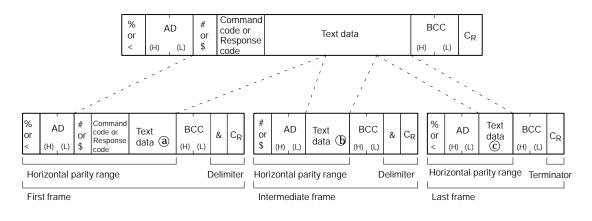
Data is limited to a certain number of characters. For example, the contact number above is specified using four characters, so when the X1F contact area is read, a 0 will be added at the beginning to fill out the number of characters and form a four-character string.

12.1.2 Single Frames and Multiple Frames

Single-frame commands and responses

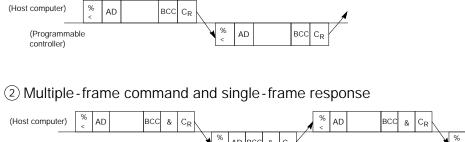
Maximum message length

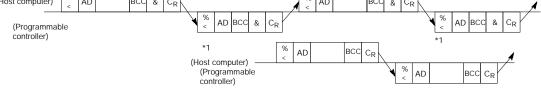
The maximum message length for a single frame of a command or response (the number of characters from the header to the terminator) is as indicated below. If the maximum message length is exceeded, the message should be split into multiple sections and sent (responses should be split into several frames and sent).

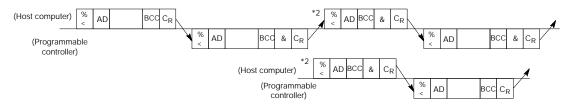


118 characters

(Expanded header)


2048 characters Some restrictions apply, however, based on the type and command.


Multiple-frame commands and responses


Sample communication timing chart

① Single-frame command and single-frame response

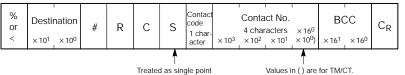
③ Single-frame command and multiple-frame response

④ When multiple-frame command is aborted before being completed

Note

When a transmission is split into several frames and sent, after one frame has been sent, the next frame cannot be sent until a transmission request message (*1 in the sample communication timing chart) has been received from the partner side. If multiple frames are being received, a transmission request message (*2 in the sample communication timing chart) should be sent to the partner side so that the next frame can be received.

12.1.3 List of MEWTOCOL-COM Commands


Table of command

Command name	Code	Description
Read contact area	RC (RCS) (RCP) (RCC)	Reads the on and off status of contacts. - Specifies only one point - Specifies multiple contacts. - Specifies a range in word units.
Write contact area	WC (WCS) (WCP) (WCC)	Turns contacts on and off. - Specifies only one point - Specifies multiple contacts. - Specifies a range in word units.
Read data area	RD	Reads the contents of a data area.
Write data area	WD	Writes data to a data area.
Read timer/counter set value area	RS	Reads the value set for a timer/counter.
Write timer/counter set value area	WS	Writes a timer/counter setting value.
Read timer/counter elapsed value area	RK	Reads the timer/counter elapsed value.
Write timer/counter elapsed value area	WK	Writes the timer/counter elapsed value.
Register or Reset contacts monitored	MC	Registers the contact to be monitored.
Register or Reset data monitored	MD	Registers the data to be monitored.
Monitoring start	MG	Monitors a registered contact or data.
Preset contact area (fill command)	SC	Embeds the area of a specified range in a 16-point on and off pattern.
Preset data area (fill command)	SD	Writes the same contents to the data area of a specified range.
Read system register	RR	Reads the contents of a system register.
Write system register	WR	Specifies the contents of a system register.
Read the status of PLC	RT	Reads the specifications of the programmable controller and error codes if an error occurs.
Remote control	RM	Switches the operation mode of the programmable controller.
Abort	AB	Aborts communication.

[RCS] Read contact area (single point)

This reads the on and off status for only one contact.

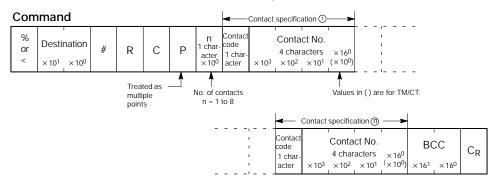
Command

Normal response (Read successful)

% or	Source	\$ R	Contact data	BC	C	C _R
<	$\times 10^{1}$ $\times 10^{0}$		1 char- acter	× 16 ¹	×16 ⁰	

Error response (Read error)

% or	Source	ļ	Error	code	BC	с	C _R
<	×10 ¹ ×10 ⁰		×16 ¹	×16 ⁰	×16 ¹	×16 ⁰	


Contact code		
Contact		Notation
External input	х	"Х"
External output	Y	"Y"
Internal relay	R	" R "
Link relay	L	"L"
Timer	т	" T "
Counter	С	" C "

Contact data

Contact	Notation
on	" 1 "
off	" 0 "

[RCP] Read contact area (plural points)

This reads the on and off status for multiple contacts.

Normal response (Read successful)

% or <	Source × 10 ¹ × 10 ⁰	\$	R	С	Contact data① 1 char- acter		Contact data n 1 char- acter	BCC	C _R	
--------------	---	----	---	---	--------------------------------------	--	---------------------------------------	-----	----------------	--

Error response (Read error)

% or	So	urce	I	Error	code	BC	C	C _R
<	× 10 ¹	×10 ⁰		×16 ¹	×16 ⁰	× 16 ¹	×16 ⁰	

Contact code

Contact	Notation
External input X	" X "
External output Y	"Y"
Internal relay R	" R "
Link relay L	"L"
Timer T	" T "
Counter C	" C "

Contact data

Contact	Notation
on	"1"
off	" 0 "

[RCC] Read contact area (word units block)

This reads the on and off status of the contact in word units.

Command

$ \begin{vmatrix} \% \\ or \\ < \\ \times 10^{1} \\ \times 10^{0} \end{vmatrix} \# R C C \begin{pmatrix} Contact \\ cde \\ char. \\ acter \\ \times 10^{3} \\ \times 10^{2} \\ \times 10^{1} \\ \times 10^{0} \\ \times 10^{3} \\ \times 10^{2} \\ \times 10^{1} \\ \times 10^{0} \\ \times 10^{3} \\ \times 10^{2} \\ \times 10^{1} \\ \times 10^{0} \\ \times 10^{3} \\ \times 10^{2} \\ \times 10^{1} \\ \times 10^{0} \\ \times 10^{3} \\ \times 10^{2} \\ \times 10^{1} \\ \times 10^{0} \\ \times 10^{1} \\ \times 10^{1} \\ \times 10^{0} \\ \times 10^{1} \\ \times 10^{$

Treated as word

Normal response (Read successful) The contact information is read as hexadecimal data, in word units.

or <	×10 ¹ ×10 ⁰	>	R	C	4 char ×16 ¹ ×16 ⁰	racters $\times 16^3 \times 16^2$	 ×16 ¹	4 char × 16 ⁰	acters × 16 ³	×16 ²
%	Source	¢	_		First contac	t information	Last	contact	inform	nation

(lower word) (higher word)

(lower word) (higher word)

Error response (Read error)

%	Source		Error	code	BC	CC	Cn
or	000.00	!					ΥR
<	$\times 10^1$ $\times 10^0$		×16 ¹	× 16 ⁰	×16 ¹	×16 ⁰	

Con	tact	code

Contact		Notation
External input	х	"Х"
External output	Y	"Y"
Internal relay	R	" R "
Link relay	L	" L "
Timer	т	" T "
Counter	С	" C "

BCC

×16¹ ×16⁰

 C_R

[WCS] Write contact area (single point)

This turns only one contact on or off.

Command

% or <	Destination	#	W	С	S	Contact code 1 char- acter	× 10 ³	4 cha	nct No. racters ×10 ¹	×16 ⁰	Contact data 1 char- acter	BC	CC ×16 ⁰	C _R
					A									

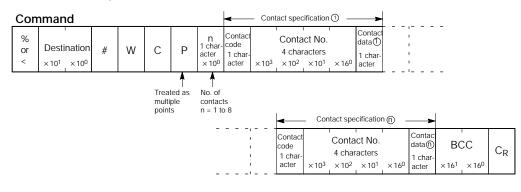
Treated as	
single point	

Normal response (Write successful)

% or Source < ×10 ¹ ×1	\$	W	С	BCC	C _R
---	----	---	---	-----	----------------

Error response (Write error)

% or	Source	I	Erroi	code	BC	C	C _R
<	×10 ¹ ×10 ⁰		×16 ¹	×16 ⁰	×16 ¹	×16 ⁰	


Contact	Notation	
External output	t Y	"Y"
Internal relay	" R "	
Link relay	L	" L "

Contact data

Contact	Notation
on	" 1 "
off	" 0 "

[WCP] Write contact area (plural points)

This turns multiple contacts on and off.

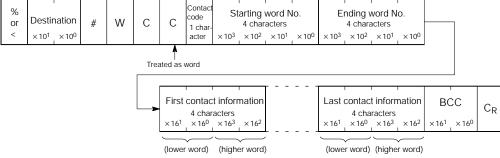
Normal response (Write successful)

% or So < ×10 ¹	ource ×10 ⁰	\$	W	С	BCC	C _R
----------------------------------	---------------------------	----	---	---	-----	----------------

Error response (Write error)

% or	Source	ļ	Error	code	BC	c	C _R
<	$\times 10^1$ $\times 10^0$		×16 ¹	×16 ⁰	×16 ¹	×16 ⁰	

Contact	Notation
External output Y	"Y"
Internal relay R	" R "
Link relay L	" L "


(Contact data				
	Contact	Notatio			
	on	"1"			

ontact	Notation
on	" 1 "
off	" 0 "

[WCC] Write contact area (word units block)

This turns a contact on or off in word units.

Command The contact information is read as hexadecimal data, in word units.

Normal response (Write successful)

% Source or ×10 ¹ ×10 ⁰	\$	W	С	BCC	C _R
--	----	---	---	-----	----------------

Error response (Write error)

% or	Sou	irce	ļ	Error	code	BC	c	C _R
<	× 10 ¹	×10 ⁰		×16 ¹	×16 ⁰	× 16 ¹	× 16 ⁰	

Contact code

Contact	Notation
External output Y	" Y "
Internal relay R	" R "
Link relay L	" L "

[RD] Read data area

This reads the contents of the data area.

To read the contents of DT, LD, and FL:

Command

9 0	Desti	nation	#	R	Data code 1 char-	ç	Startinç 5 ch	g word aracter:					ng wore characte			BC	C	C _R
<	×10 ¹	×10 ⁰			acter	$ imes 10^4$	× 10 ³	×10 ²	$\times 10^{1}$	$ imes 10^{0}$	$ imes 10^4$	×10 ³	×10 ²	× 10 ¹	$ imes 10^{0}$	×16 ¹	×16 ⁰	

Normal response (Read successful)

	% or <	Source	\$	R	D	First register contents 4 characters ×16 ¹ ×16 ⁰ ×16 ³ ×16 ²		Last register contents 4 characters × 16 ¹ × 16 ⁰ × 16 ³ × 16 ²	BCC × 16 ¹ × 16 ⁰	C _R
--	--------------	--------	----	---	---	--	--	---	--	----------------

(lower word) (higher word)

Error response (Read error)

% or	Source	ļ	' Error code	BCC	C _R
<	$\times 10^1$ $\times 10^0$		×16 ¹ ×16 ⁰	$\times 16^1 \times 16^0$	

(lower word) (higher word)

Data code	
Data	Notation
Data register D	т " D "
Link data register LI	D "L"
File register FI	- "F"

To read the contents of an index register:

Command

% or	Destination	#	R	D	Data code	0	0	0	0	0	0	0	0	0	BCC	C _R
<	$\times 10^1$ $\times 10^0$				2 characters			1	90	characte	ers I		1		×16 ¹ ×16 ⁰	

Normal response (Read successful) (For I0 or I1)

|--|

(lower word) (higher word)

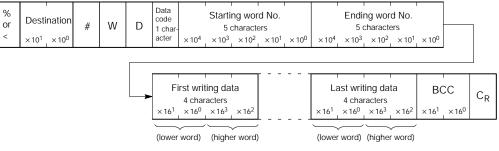
Normal response (Read successful) (For I0 and I1)

% or	Source	\$ R	D	Reg	ister co 4 char		(I0)	Reg	ister co 4 char	ontents acters	(I1)	BC	c	C _R
<	$\times 10^1$ $\times 10^0$			×16 ¹	×16 ⁰	×16 ³	×16 ²	×16 ¹	×16 ⁰	× 16 ³	× 16 ²	×16 ¹	×16 ⁰	

(lower word) (higher word) (lower word) (higher word)

Error response (Read error)

% or	Source	i	Erroi	code	BC	CC	C _R
<	$\times 10^{1}$ $\times 10^{0}$		×16 ¹	×16 ⁰	×16 ¹	×16 ⁰	


Data cod	е	
Data	Nota	ation
IO	" I "	"Х"
I1	" I "	"Y"
I0, I1	" I "	" D "

[WD] Write data area

This writes the contents of the data area.

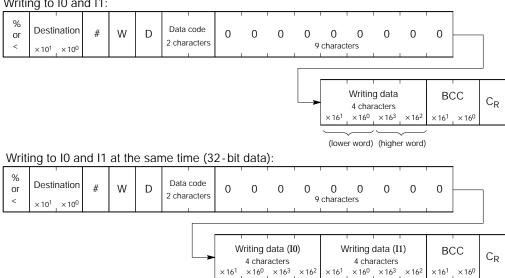
To write the contents of DT, LD, and FL:

Command

Normal response (Write successful)

% or	Source	\$ W	D	BCC	C _R
<	$\times 10^{1}$ $\times 10^{0}$			$\times 16^{1} \times 16^{0}$	

Error response (Write error)


% or	Source	ļ	Error code	BCC	C _R
<	$\times 10^{1}$ $\times 10^{0}$		×16 ¹ ×16 ⁰	$\times 16^1 \times 16^0$	

Data code

Data		Notation
Data register	DT	" D "
Link data register	LD	"L"
File register	FL	"F"

To write to an index register:

Command Writing to I0 and I1:

(lower word) (higher word) (lower word) (higher word)

Normal response (Write successful)

% or	Source	\$ W	D	BCC	C _R
<	$\times 10^1$ $\times 10^0$			×16 ¹ ×16	,0

Error response (Write error)

% or	Source	ļ	Error code	BCC	C _R
<	$\times 10^1$ $\times 10^0$		×16 ¹ ×16 ⁰	$\times 16^1$ $\times 16^0$	

Data code

Data	Notation						
IO	" I "	"Y"					
I1	" I "	"Y"					
I0, I1	" I "	" D "					

[RS] Read set value area

This reads the value set for a timer/counter.

Command

% or	Destination	#	R	S	Starti	5.	r/counte racters	er No.	Endir	ng timer 4 char	r/counte acters	er No.	BC) CC	C _R
<	$\times 10^{1}$ $\times 10^{0}$				$ imes 10^3$	× 10 ²	× 10 ¹	×10 ⁰	$ imes 10^3$	× 10 ²	× 10 ¹	×10 ⁰	×16 ¹	×16 ⁰	

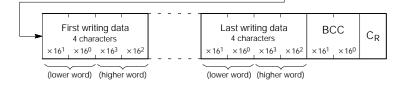
Normal response (Read successful)

% or <	Source ×10 ¹ ×10 ⁰	\$ R	S	First se 4 chai ×16 ¹ × 16 ⁰	et value acters ×16 ³	×16 ²	× 16 ¹	Last se 4 chai ×16 ⁰	et value racters ×16 ³	× 16 ²	BC ×16 ¹	CC ×16 ⁰	C _R
				<u> </u>	\sim	\sim		~		\sim			

(lower word) (higher word)

\sim	\sim
(lower word)	(higher word)

Error response (Read error)


% or	Source	ļ	Error code	BCC	C _R
<	$\times 10^{1}$ $\times 10^{0}$		$\times 16^{1}$ $\times 16^{0}$	$\times 16^1$ $\times 16^0$	

[WS] Write set value area

This writes the value to be set for a timer/counter.

Command

	% or <	Destination $\times 10^1 \times 10^0$	#	W	S		ing time 4 chai × 10 ²	racters		Endii × 10 ³	ng timei 4 chara × 10 ²		er No. × 10 ⁰	
--	--------------	---------------------------------------	---	---	---	--	---	---------	--	----------------------------	--	--	-----------------------------	--

Normal response (Write successful)

% or	Source	\$ W	S	BCC	C _R
<	$\times 10^{1}$ $\times 10^{0}$			$\times 16^1 \times 16^0$	

Error response (Write error)

% or	Source	ļ	Error code	BCC	C _R
<	$\times 10^{1}$ $\times 10^{0}$		×16 ¹ ×16 ⁰	$\times 16^{1} \times 16^{0}$	

[RK] Read elapsed value area

This reads the elapsed value for a timer/counter.

Command

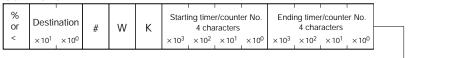
	% or	Destina	ation	#	R	к	Starti	5	r/counte racters	er No.	Endir	ng timer 4 chara	/counte acters	r No.	BC	C	C _R]
<	<	×10 ¹ >	×10 ⁰				×10 ³	×10 ²	×10 ¹	×10 ⁰	×10 ³	×10 ²	× 10 ¹	×10 ⁰	×16 ¹	×16 ⁰		l

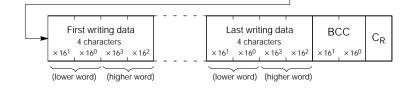
Normal response (Read successful)

% or <	Source	\$ R	к	First elapsed value 4 characters × 16 ¹ × 16 ⁰ × 16 ³ × 16 ²	Last elapsed value 4 characters × 16 ¹ × 16 ⁰ × 16 ³ × 16 ² × 16 ¹ × 16 ⁰	C _R

(lower word) (higher word)

	$\underline{\hspace{1.5cm}}$
(lower word)	(higher word)


Error response (Read error)

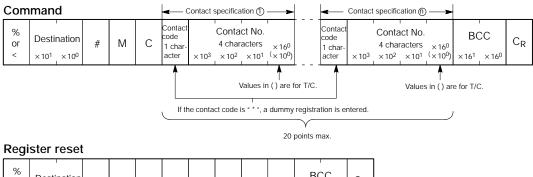

% or	Source	i	Error	code	BC	C	C _R
<	$\times 10^{1}$ $\times 10^{0}$		×16 ¹	×16 ⁰	× 16 ¹	×16 ⁰	

[WK] Write elapsed value area

This writes the elapsed value for a timer/counter.

Command

Normal response (Write successful)


% or	Source	\$ W	к	BCC	C _R
<	$\times 10^{1}$ $\times 10^{0}$			×16 ¹ ×16 ⁰	

Error response (Write error)

% or	Source	ļ	Error c	ode	BC	с	C _R
<	$\times 10^1$ $\times 10^0$		×16 ¹ ×	< 16 ⁰	× 16 ¹	× 16 ⁰	

[MC] Register or Reset contacts monitored

This registers a contact to be monitored. Up to 80 points can be registered for one unit.

% or <	Destination $\times 10^1 \times 10^0$	#	Μ	С	F	F	F	F	F	BCC ×16 ¹ ×	16 ⁰	C _R
--------------	---------------------------------------	---	---	---	---	---	---	---	---	---------------------------	-----------------	----------------

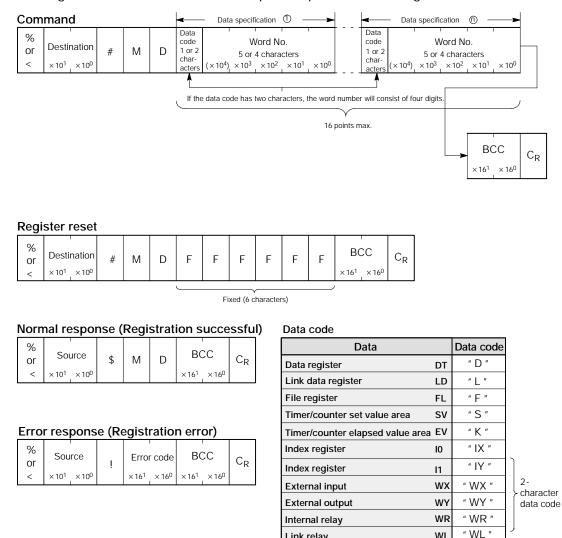
Fixed (5 characters)

Normal response (Registration successful)

% or	Source	\$ М	С	BCC	C _R
<	$\times 10^{1}$ $\times 10^{0}$			×16 ¹ ×16 ⁰	

Error response (Registration error)

% or	Source	Source	ļ	Erro	r code	BC	C	C _R
<	$\times 10^1 \times 10^0$	×10 ¹ ×10 ⁰		×16 ¹	×16 ⁰	×16 ¹	×16 ⁰	


Contact code

Contact		Notation
External input	х	"Х"
External outpu	t Y	"Y"
Internal relay	R	" R "
Link relay	L	"L"
Timer	Т	" T "
Counter	С	" C "

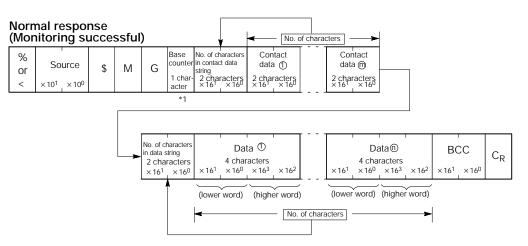
WL

[MD] Register or Reset data monitored

This registers data to be monitored. Up to 16 points can be registered for one unit.

If the data code is IX or IY, "0" should be specified for the four characters of _ the word number.

Link relay


Dummy registrations (" * ") are not possible when registering data to be _ monitored.

[MG] Monitoring start

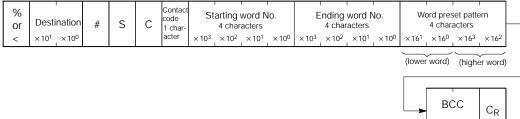
This monitors a contact or data that has been registered.

Command

% or	Destination	#	М	G	BCC	C _R
<	$\times 10^{1}$ $\times 10^{0}$				$\times 16^{1}$ $\times 16^{0}$	

*1 The base counter returns "A" if scanning took place ten times or more on the PLC side since the previous response.

Error response (Monitoring error)


% or	Sour	ce	ļ	Error	code	BC	c	C _R
<	×10 ¹	×10 ⁰		×16 ¹	× 16 ⁰	×16 ¹	×16 ⁰	

- Contact data is entered in the order registered, starting from bit 0 of the contact data ①.
- Data is entered in the order registered, starting from the data \bigcirc .

[SC] Preset contact area (fill command)

This embeds the areas of the specified range for 16 on and off points.

Command

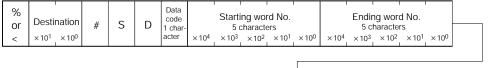
Normal response (Preset successful)

% or	Source	\$ S	С	BCC	C _R
<	$\times 10^1$ $\times 10^0$			$\times 16^{1} \times 16^{0}$	

Error response (Preset error)

% or	Source		Error code	BCC	C⊳
	×10 ¹ ×10 ⁰	•	×16 ¹ ×16 ⁰	$\times 16^{1}$ $\times 16^{0}$	- K

Contact	code


Contact		Notation
External output	tΥ	"Y"
Internal relay	R	" R "
Link relay	L	" L "

×16¹ × 16⁰

[SD] Preset data area (fill command)

This writes the same contents to the data area of the specified range.

Command

 W	ord pres 4 char		ern	BC	C	C _R
×16 ¹	×16 ⁰	×16 ³	×16 ²	×16 ¹	×16 ⁰	

(lower word) (higher word)

Normal response (Preset successful)

% or	Source	\$ S	D	BCC	C _R
<	$\times 10^{1}$ $\times 10^{0}$			$\times 16^{1}$ $\times 16^{0}$	

Error response (Preset error)

% or	Source	ļ	Error	code	BC	C	C _R
<	$\times 10^{1}$ $\times 10^{0}$		×16 ¹	×16 ⁰	×16 ¹	×16 ⁰	

Data code

Data		Notation
Data register	DT	" D "
Link data register	LD	"L"
File register	FL	"F"

[RT] Read the status of PLC

This reads information such as error codes if an error occurs in the programmable controller specifications.

<u>Command</u>

		% or	Destination $\times 10^1 \times 10^0$	#	R	Т	BCC	C _R
--	--	---------	---------------------------------------	---	---	---	-----	----------------

Normal response (Read successful)

% or <	Source $\times 10^1$ $\times 10^0$	\$	R	Т	Model 2 chara × 10 ¹		2 cha	sion racters × 16 ⁰	capa	racters	mod 2 char	
--------------	------------------------------------	----	---	---	---------------------------------------	--	-------	--------------------------------------	------	---------	---------------	--

$ \begin{array}{c} 2 \text{ characters} \\ \times 16^1 \times 16^0 \end{array} \times 16^1 \times 16^0 \times 16^1 \times 16^0 \times 16^1 \times 16^0 \times 16^3 \times 16^2 \times 16^1 \times 16^0 \end{array} $
--

(lower word) (higher word)

Error response (Read error)

ſ	% or	Sour	rce	ļ	Error	code	BC	C	C _R
l	<	×10 ¹	×10 ⁰		× 16 ¹	×16 ⁰	× 16 ¹	×16 ⁰	

Model code

This expresses the CPU unit type as a 2-character decimal value.

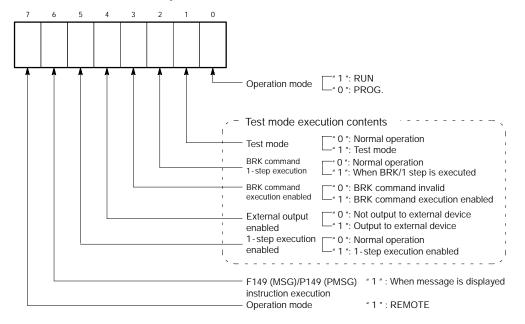
Code	Model
20	FP2 and FP2SH

Version

This expresses the CPU unit version as a 2-character decimal value. For example: $15 \rightarrow$ Ver. 1.5

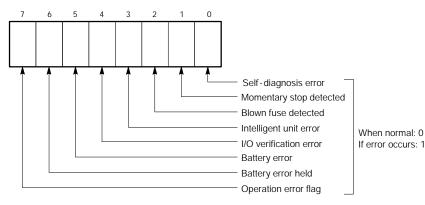
Program capacity

This expresses the program capacity specified by system register no. 0 as a 2 - character decimal value. The value is expressed in k - step units.


Code	Program capacity	Last step address
02	2k steps	1,534
n	n steps	1,024 x n - 512 - 2 For example: If n = 8, the value is 7,678.
16	16k steps	15,870
32	32k steps	32,254

Note: With the FP2SH, this will be "0".

Operation mode


- The contents of special internal relays R9020 to R9027 are expressed as 2-character hexadecimal values.
- The user can check the settings of the mode selector switches on the CPU unit (RUN / PROG. / REMOTE), whether normal operation or test operation is being used, and other elements.

Values are read in binary notation, as shown below.

Error flag

The statuses of the eight error flags (special internal relays) R9000 to R9007 are expressed as 2-character hexadecimal values. They are read using binary notation, as shown below.

Self-diagnostic error code

- If an error occurs, the self-diagnosis error code is expressed as a 4-digit hexadecimal value. Please be careful, since self-diagnosis error codes are normally treated as decimal values.
 For example, if the content is read as "2D00" in hexadecimal format, the self-diagnosis error code will be "2D". In decimal notation it will be read as "45" (operation error).
- If no error has occurred, the value will be "0000".

[RR] Read system register

This reads the contents of the system registers.

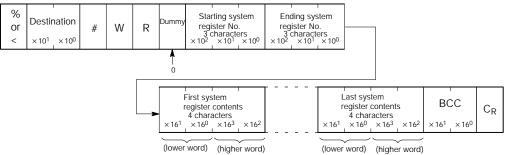
Command

% or	Destination	#	R	R	Dummy register No. 3 characters		Ending system register No. 3 characters		BC	BCC			
<	$\times 10^{1}$ $\times 10^{0}$					$\times 10^{2}$ $\times 10^{1}$	×10 ⁰	×10 ²	×10 ¹	×10 ⁰	× 16 ¹	×16 ⁰	
					≜								
					0								

Normal response (Read successful)

(lower word) (higher word)

(lower word) (higher word)


Error response (Read error)

% or	Source	ļ	Error code	BCC	C _R
<	$\times 10^{1}$ $\times 10^{0}$		$\times 16^1 \times 16^0$	$\times 16^{1}$ $\times 16^{0}$	

[WR] Write system register

This sets the system registers.

Command

Normal response (Write successful)

% or	Source	\$ W	R	BCC	C _R
<	$\times 10^{1}$ $\times 10^{0}$			×16 ¹ ×16 ⁰	

Error response (Write error)

%	1						
or	Source	ļ	Error	code	BC	CC	C_R
<	×10 ¹ ×10 ⁰		× 16 ¹	× 16 ⁰	× 16 ¹	×16 ⁰	

[RM] Remote control

This switches the operation mode of the programmable controller. It is effective only when the operation mode of the programmable controller is the REMOTE mode.

Command

$\begin{array}{c} \% \\ \text{or} \\ < \end{array} \\ \begin{array}{c} \text{Destination} \\ \times 10^1 \\ \times 10^0 \end{array}$	#	R	Μ	Opera- tion code 1 char- acter	BC	CC × 16 ⁰	C _R
--	---	---	---	--	----	-------------------------	----------------

Normal response (Remote control successful)

% or	Source	\$ R	М	BCC	C _R	
<	×10 ¹ ×10 ⁰			×16 ¹ ×16 ⁰		

Error response (Remote control error)

% or	Source	ļ	Error	code	BC	CC	C _R
<	$\times 10^{1}$ $\times 10^{0}$		×16 ¹	× 16 ⁰	× 16 ¹	×16 ⁰	

Operation code

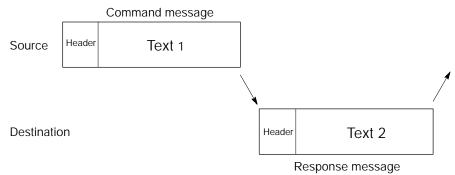
Code	Operation
" R ″	PROGRAM mode \rightarrow RUN mode (booting)
" P "	RUN mode \rightarrow PROGRAM mode (stopped)

[AB] Abort

If a transmission is aborted while a multiple-frame response is being received from the programmable controller, this is issued from the side sending the command (the computer side).

<u>Command</u>

% or	Destination	#	А	В	BCC	C _R
<	$\times 10^1 \times 10^0$				×16 ¹ ×16 ⁰	


Response

No response

12.2 MEWTOCOL-DAT (Data Transfer)

12.2.1 Overview of MEWTOCOL-DAT

Overview of command and response

A dedicated procedure and conversational-style format are used.

Data is sent as binary codes.

Transmission rights are transferred each time a command message is sent.

The maximum length for text data is 1,020 words.

If the transmission source is a programmable controller, command messages are transmitted by executing the SEND and RECV commands.

• With MEWTOCOL communication carried out through an ET-LAN unit, a format is used in which the special header shown below is added to MEWTOCOL-DAT commands and responses.

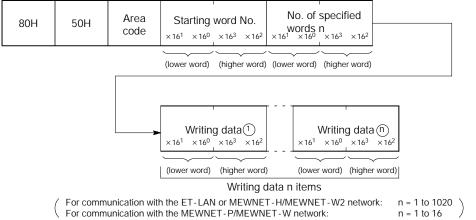
Special header for ET-LAN unit	MEWTOCOL command/response

• The content of the special header changes depending on the communication conditions.

Command code and Response code

Table of Command

Command code	Description	Corresponding response code
50H	Writing to a data area	D0H
51H	Reading from a data area	D1H
52H	Writing of contact information	D2H
53H	Reading of contact information	D3H


- The corresponding response code is a value that is the reverse of the first bit (0 → 1) of the command code (1-byte binary code).
- The end code for a normal response is FFH, while that when an error occurs is an error code. (See "MEWTOCOL Error Codes" on page 12 - 35.)

12.2.2 List of MEWTOCOL-DAT Commands

Write data area

The specified number of words of data are written, starting from the specified first word number of the data area.

Command

Normal response (Write successful)

80H	D0H	FFH
-----	-----	-----

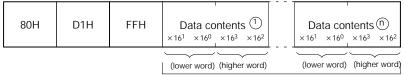
Error response (Write error)

80H	D0H	Error code
-----	-----	------------

Area type	Area code
Link relay (WL)	00
Internal relay (WR)	01
External output relay (WY)	02
External input relay (WX)	03
Timer/counter set value area (SV)	04
Timer/counter elapsed value area (EV)	05
Link data register (LD)	06
Special internal relay (WR)	07
Special data register (DT)	08
Data register (DT)	09
File register (FL)	0A

12.2 MEWTOCOL-DAT (Data Transfer)

[51H] Read data area


The specified number of words of data are read, starting from the specified first word number of the data area.

Command

	80H	51H	Area code		0	word ×16 ³		W	ords i	specif n × 16 ³	
--	-----	-----	--------------	--	---	--------------------------	--	---	--------	----------------------------------	--

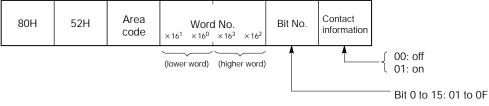
(lower word) (higher word) (lower word) (higher word)

Normal response (Read successful)

Reading data n items

 $\left(\begin{array}{c} \mbox{For communication with the ET-LAN or MEWNET-H/MEWNET-W2 network:} & n=1 \mbox{ to 1020} \\ \mbox{For communication with the MEWNET-P/MEWNET-W network:} & n=1 \mbox{ to 16} \end{array} \right)$

Error response (Read error)


80H	D1H	Error code	
-----	-----	------------	--

Area type	Area code
Link relay (WL)	00
Internal relay (WR)	01
External output relay (WY)	02
External input relay (WX)	03
Timer/counter set value area (SV)	04
Timer/counter elapsed value area (EV)	05
Link data register (LD)	06
Special internal relay (WR)	07
Special data register (DT)	08
Data register (DT)	09
File register (FL)	0A

[52H] Write contact information

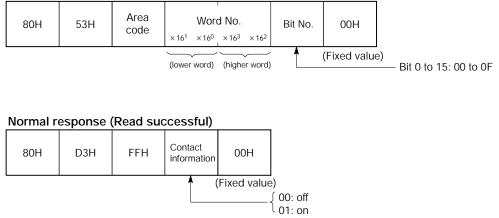
Writing is carried out to the specified contact of the contact area.

Command

Normal response (Write successful)

80H	D2H	FFH	
-----	-----	-----	--

Error response (Write error)


80H D2H Error code

Area type	Area code
Link relay (WL)	00
Internal relay (WR)	01
External output relay (WY)	02
External input relay (WX)	03
Timer/counter set value area (SV)	04
Timer/counter elapsed value area (EV)	05
Link data register (LD)	06
Special internal relay (WR)	07
Special data register (DT)	08
Data register (DT)	09
File register (FL)	0A

[53H] Read contact information

Reading is carried out from the specified contact of the contact area.

Command

Error response (Read error)

80H	D3H	Error code
-----	-----	------------

Area type	Area code
Link relay (WL)	00
Internal relay (WR)	01
External output relay (WY)	02
External input relay (WX)	03
Timer/counter set value area (SV)	04
Timer/counter elapsed value area (EV)	05
Link data register (LD)	06
Special internal relay (WR)	07
Special data register (DT)	08
Data register (DT)	09
File register (FL)	0A

12.3 MEWTOCOL Error Codes

12.3.1 Table of Error Code

The same error codes are used for the computer link function and data link function.

Link system error

Error code	Error name	Steps to take		
22H	WACK error	The receive buffer of the partner node has overflowed. Steps to take: Keep the data size within the maximum range.		
23H	MEWTOCOL station No. overlap	The transmission has been interrupted because the MEWTOCOL station number of the source node duplicates that of another node. Steps to take: Change the setting for the MEWTOCOL station number and try again.		
24H	ET - LAN unit hardware error	Hardware error in communication control unit Steps to take: Turn the power supply off and then on again. - If the error still occurs, replace the unit. - If the error does not occur, the malfunction may have been caused by noise. Check the installation and layout of the transmission line and the usage environment.		
26H	MEWTOCOL station No. setting error	A value other than 01 to 64 has been specified for the MEWTOCOL station number of the source node. Steps to take: Specify a MEWTOCOL station number within a range of 01 to 64.		
27H	No support error	An attempt was made to send a packet that is not supported by the system. Steps to take: Please contact your dealer.		
28H	No response error	Timeout error while waiting for response from partner station Steps to take: Use the application program to send the transmission again.		
30H	Time-out error	Ongoing transmission disabled status Steps to take: Use the application program to send the transmission again.		
32H	Transmission impossible error	The transmission was interrupted because the buffer of the source node overflowed. Steps to take: Keep the data size within the maximum range.		
33H	Communication stop	The transmission was interrupted because the network access switch of the MEW- NET-H link unit serving as a relay was off. Steps to take: Turn on the network access switch.		
36H	No destination error	 No partner station exists on the network. Network access was disengaged. Steps to take: Check to see if a partner station exists on the network. Use the application program to send the transmission again. 		
38H	Other communication errors	Transmission error other than the above Steps to take: Use the application program to send the transmission again.		

When the error occurred on the second or a higher hierarchy level of a multiple - hierarchy link, no response will be returned.

For basic procedure errors, processing errors, and programmable controller application errors, if a link-related error (including hierarchical) occurred within the network, no response will be returned.

12.3 MEWTOCOL Error Codes

Basic procedure error

Error code	Error name	Steps to take		
40H	BCC error	When using the computer link function: A BCC error occurred in the command data. Steps to take: Use the application program to send the transmission again.		
41H	Format error	 When using the computer link function: A command message was sent that does not fit the transmission format. There is too much or too little command data. "#" or "transmission destination" does not exist, or a similar problem For data transfer function An attempt was made to send a greater volume of data than can be transmitted. Steps to take: Correct the format and command. 		
42H	No support error	When using the computer link function: A command was sent that is not supported. A command is being sent to a destination that is not supported, etc. Steps to take: Use a command that is supported.		
43H	Procedure error	When using the computer link function: While the programmable controller was waiting for a transmission request message (there was still more data to be sent), a different command was sent. Steps to take: Send the transmission request message to the partner node.		

Processing error

-	_	
Error code	Error name	Steps to take
50H	Link setting error	When using the computer link function: A route number has been specified that does not exist. Steps to take: Specify the route number correctly.
51H	Simultaneous operation error	When using the computer link function: When sending a command to another node, the transmission buffer of the sending machine overflowed. Steps to take: Use the application program to send the transmission again.
52H	Transmit disable error	 When using the computer link function: Data cannot be transmitted to another node. Steps to take: Turn the power supply off and then on again. If the error still occurs, replace the unit. If the error does not occur, the malfunction may have been caused by noise. Check the installation and layout of the transmission line and the usage environment.
53H	Busy error	When using the computer link function: A command was received while multiple frames were being processed. Steps to take: Use the application program to send the transmission again.

PLC application error

Error code	Error name	Steps to take		
60H	Parameter error	When using the computer link function: The code used is for an area specification parameter that does not exist, or is a code that cannot be used with that command (X, Y, D, etc.). An inappropriate code is being used for the function specification parameter (0, 1, 2, etc.). Steps to take: Specify using the correct format code.		
61H	Data error	When using the computer link function: An error occurred indicating that the specification for the contact number, area number, or the code format used to handle the data (BCD, HEX, etc.) is excessive, insufficient, or the wrong range has been specified. When using the data transfer function: The wrong field has been specified for the source node or another node. Steps to take: Specify using the correct format code.		
62H	Registration error	When using the computer link function: Too many registrations have been entered, or a registration has not been entered (monitor registration, trace registration, etc.). When there are too many registrations, reset the registrations. Steps to take: Specify using the correct format code.		
63H	Mode error	When using the computer link function: When a command was transmitted, the operation mode was one in which that com- mand cannot be processed. Steps to take: Specify using the correct format code.		
65H	Protect error	When using the computer link function: An attempt was made to write data to a program area or system register while the memory protect status was in effect. Steps to take: Data cannot be written while the memory protect status is in effect.		
66H	Address error	When using the computer link function: An error occurred indicating that the code format (BCD, HEX, etc.) for the address (program address, absolute address, etc.) data is excessive, insufficient, or the wrong range has been specified. Steps to take: Specify using the correct format code.		
67H	No data error	When using the computer link function: The data to be read does not exist. (An attempt was made to read a comment registra- tion or other data that has not been written.) Steps to take: Specify using the correct format code.		
72H	Time-out error	When using the data transfer function: Timeout error occurred while waiting for a transmission answer Steps to take: Use the application program to send the transmission again.		
73H	Time-out error	When using the data transfer function: Timeout error occurred while waiting for the transmission buffer to become empty Steps to take: Use the application program to send the transmission again.		
74H	Time-out error	When using the data transfer function: Timeout error occurred while waiting for a response Steps to take: Use the application program to send the transmission again.		

12.3 MEWTOCOL Error Codes

Chapter 13

Specifications

13.1	Tables of Performance Specifications			
	13.1.1	General Specifications	13 - 3	
	13.1.2	Performance Specifications	13 - 3	
	13.1.3	Communication Functions	13 - 4	
13.2	I/O Allo	cation	13 - 5	
13.3	Table of	f Shared Memory	13 - 7	
13.4		^f Related Relays, Registers and ions	13 - 24	
	13.4.1	System Register	13 - 24	
	13.4.2	Special Internal Relay	13 - 25	
	13.4.3	Special Data Register	13 - 26	
	13.4.4	Data Transfer Instructions	13 - 27	
13.5	Minimur	m Transmission Delay Time	13 - 45	
13.6	ASCII C	Codes	13 - 48	
13.7	Dimens	ions	13 - 49	

13.1 Tables of Performance Specifications

13.1 Tables of Performance Specifications

13.1.1 General Specifications

Item	Specification		
Ambient temperature	0 to 55 °C/32 to 131 °F		
Storage temperature	- 20 to 70 °C/- 4 to 158 °F		
Ambient humidity	30 to 85%RH (no-condensing)		
Storage humidity			
Vibration resistance	10 to 55 Hz, 1 cycle/min.: double amplitude of 0.75 mm/0.030 in., 10 min. on 3 axes		
Shock resistance	98 m/s ² or more, 4 times on 3 axes		
Noise resistance	1,500 Vp-p, pulse width $1\mu s$ for 50ns (based on in-house measurements)		
Environment	Free from corrosive gases and excessive dust		
Current consumption	670 mA or less (at 5 V DC)		
External power supply for transceiver (when 10BASE5 (AUI) is used)	12 V DC/1 A max. (internal voltage drop 1 V max.)		
Weight	125 g/4.409 oz		

13.1.2 Performance Specifications

Item		Specification
I/O occupied points		32SX32SY (*1)
Mounting position and unit quantity limits		Up to the following numbers can be installed in any basic backplane slot (including Multi-wiring unit W2 mode) FP2 CPU Unit: 3 units FP2SH CPU Unit: 8 units
Communications function		 MEWTOCOL-COM: computer link function (2K B max.) (*2) MEWTOCOL-DAT: data transfer (1,020 words max.) Transparent communication
No. of communication connections		Eight connections max.
Transparent	Transmit	Factory setting: 1k words/connection x 3
communications buffer (*3)	Receive	Factory setting: 1k words/connection x 3

Notes

- 1) It is possible to set the unit type to "0SE" using a programming tool such as FPWIN GR.
- 2) A programming tool such as the FPWIN GR can be used to carry out remote programming through a LAN circuit.
- 6k words (transmit and receive combined) can be freely allocated using eight connections.

13.1 Tables of Performance Specifications

13.1.3 Communication Functions

Item	100BASE-TX (*1)	10BASE-T (*1)	10BASE5
Data transfer speed	100 M bits/s	10 M bits/s	10 M bits/s
Transfer method	Base band	Base band	Base band
Max. segment length	100 m/328.08 ft. (*2)	100 m/328.08 ft. (*2)	500 m/1,640.4 ft.
Max. distance between nodes	205 m/672.564 ft. 500 m/1,640.4 ft. (2 segments) (5 segments)		2,500 m/8,202 ft. (5 segments)
Communication cable for connection	Category 5 UTP cable	Category 3, 4 and 5 UTP cable	Transceiver cable
Max. transceiver cable length	_	—	50 m/164.04 ft. (*3)
Max. number of nodes	_	—	100 nodes/segment
Node spacing	_	_	Integer multiples of 2.5 m/ 8.202 ft.

- NOLES
 - 1) Switching between 100BASE-TX and 10BASE-T is done automatically by auto negotiation function.
 - 2) The standards cite 100 m/328.08 ft. as the maximum, but noise resistance measures such as attaching a ferrite core may be necessary in some cases, depending on the usage environment. Also, if the hub is positioned close to a control board, we recommend using it at a distance of 10 m/32.808 ft. or less.
 - 3) The standards cite 50 m/164.04 ft. as the maximum, but noise resistance measures such as attaching a ferrite core may be necessary in some cases, depending on the usage environment. Also, if the transceiver is positioned close to a control board, we recommend using it at a distance of 5 m/16.404 ft. or less.

13.2 I/O Allocation

The I/O signals in the table below are used when a handshake is carried out between the CPU unit and the ET-LAN unit using the I/O.

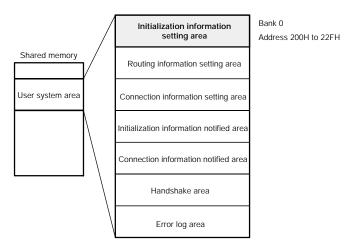
Input

(Contact numbers indicate the numbers when installed in slot no. 0.)

No.	Description	No.	Description
X0	Receive notified signal (Connection 1)	X10	Open complete signal (Connection 1)
X1	Receive complete signal (Connection 1)	X11	Open error signal (Connection 1)
X2	Transmission complete signal (Connection 1)	X12	Open complete signal (Connection 2)
X3	Transmission error signal (Connection 1)	X13	Open error signal (Connection 2)
X4	Receive notified signal (Connection 2)	X14	Open complete signal (Connection 3)
X5	Receive complete signal (Connection 2)	X15	Open error signal (Connection 3)
X6	Transmission complete signal (Connection 2)	X16	Open complete signal (Connection 4)
X7	Transmission error signal (Connection 2)	X17	Open error signal (Connection 4)
X8	Receive notified signal (Connection 3)	X18	Open complete signal (Connection 5)
X9	Receive complete signal (Connection 3)	X19	Open error signal (Connection 5)
ХА	Transmission complete signal (Connection 3)	X1A	Open complete signal (Connection 6)
ХВ	Transmission error signal (Connection 3)	X1B	Open error signal (Connection 6)
ХС	Initialization complete signal	X1C	Open complete signal (Connection 7)
XD	Initialization error signal	X1D	Open error signal (Connection 7)
XE		X1E	Open complete signal (Connection 8)
XF	Error log notified complete signal	X1F	Open error signal (Connection 8)

Output

(Contact numbers indicate the numbers when installed in slot no. 0.)


No.	Description	No.	Description
Y20	Receive request signal (Connection 1)	Y30	Open request signal (Connection 1)
Y21		Y31	
Y22	Transmission request signal (Connection 1)	Y32	Open request signal (Connection 2)
Y23		Y33	
Y24	Receive request signal (Connection 2)	Y34	Open request signal (Connection 3)
Y25		Y35	
Y26	Transmission request signal (Connection 2)	Y36	Open request signal (Connection 4)
Y27		Y37	
Y28	Receive request signal (Connection 3)	Y38	Open request signal (Connection 5)
Y29		Y39	
Y2A	Transmission request signal (Connection 3)	Y3A	Open request signal (Connection 6)
Y2B		Y3B	
Y2C	Initialization request signal	Y3C	Open request signal (Connection 7)
Y2D		Y3D	
Y2E	Error LED flash off signal (See note.)	Y3E	Open request signal (Connection 8)
Y2F	Error log notified request signal	Y3F	

next page

If the Error LED flash off signal (Y2E) is turned on, the flashing LEDs for E1 and E2 go out.

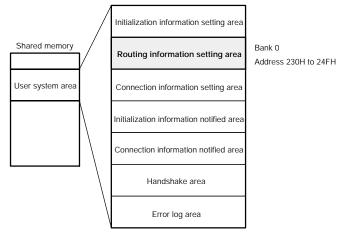
Also, while the Error LED flash off signal (Y2E) is on, the LEDs for E1 and E2 will not flash, even if a recoverable error or a warning error occurs. However, these functions are not affected by error log processing, so the error contents remain in the log.

(Shared memory addresses are allocated in word units.)

Initialization information setting area (bank 0)

Address	Name	Default value	Set value and Explanation	
200H	Source node IP address (L)	0000H	[Set value] Source node address - Address example: 192.168.1.1 (C0 A8 01 01H) IP address (L): 0101H	
201H	Source node IP address (H)	0000H	IP address (H): C0A8H - Any address other than 00000000H and FFFFFFFH is valid.	
202H	Communica- tion function setting between networks	0000H	 [Set value] 0000H: Communication between networks not used. 0001H: Communication between networks used. Specifies whether or not communication is carried out between networks using a router. When communication between networks is used, the routing information setting area should also be specified. 	
203H	Source node MEWTOCOL station number	0000H	 [Set value] 01H to 40H (01 to 64) Specifies the MEWTOCOL station no. of the source node as a value between 01 and 64 when MEWTOCOL communication is used. Specify a number that does not overlap that of any other station on the network. * A dummy value should be set even if MEWTOCOL communication is not being carried out. 	
204H 205H 206H 207H 208H 209H	Reserved (Used by the system.)		When any value is written, it should be 0000H.	

next page


Address	Name	Default value	Set value and Explanation
20AH	TCP ULP (packet existence duration)	000FH [30 seconds]	 Setting time = [Set value (1 to FFFFH)] x 2 seconds With TCP, this specifies the time that a packet exists when data transmission, etc. is carried out.
20BH	TCP zero-window timer value	0005H [10 seconds]	 Setting time = [Set value (1 to FFFFH)] x 2 seconds With TCP, this specifies the time until the receive window size check packet is re-sent when the receive window size of the other node becomes 0.
20CH	TCP re-transmis- sion timer value	0005H [10 seconds]	 Setting time = [Set value (1 to FFFFH)] x 2 seconds With TCP, this specifies the time until data is re-sent if ACK is not sent by the other node, when data transmission, etc. is carried out.
20DH	TCP closed timer value	0001H [2 seconds]	 Setting time = [Set value (1 to FFFFH)] x 2 seconds This specifies the time waited until open processing is carried out when the same port is being re-opened, when TCP close processing is done by the source node.
20EH	IP assembling timer value	000FH [30 seconds]	Setting time = [Set value (1 to FFFH)] x 2 seconds - This specifies the time waited for the next portion of data when data split by the IP is being received.
20FH	Reserved (Used by the system.)	_	When any value is written, it should be 0000H.

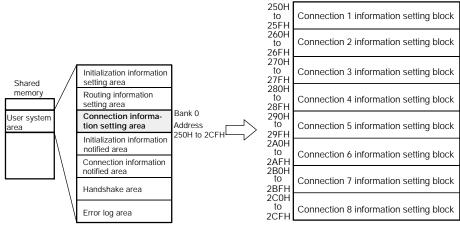
Address	Name		Default value	Set value and Explanation
210H		er starting address for transparent (Connection 1)	2800H	 [Set value] First address in receive buffer. The first address of the receive buff- er is specified using the absolute address (word address) of the shared memory when transparent communication is being carried out among the various connections. 0000H is set when this is not being used.
211H	Receiving buffe (Connection 1)	er size for transparent communication	0400H	 [Set value] Size of receive buffer. The size of the receive buffer is specified in word units when transparent communication is being carried out among the various connections. FFFFH is set when this is not being used.
212H	Transmission t communicatior	ouffer starting address for transparent n (Connection 1)	2C00H	 [Set value] First address in transmission buffer. The first address of the transmission buffer is specified using the absolute address (word address) of the shared memory when transparent communication is being carried out among the various connections. 0000H is set when this is not being used.
213H	Transmission buffer size for transparent communication (Connection 1)		0400H	 [Set value] Size of transmission buffer. The size of the transmission buffer is specified in word units when trans- parent communication is being car- ried out among the various connec- tions. FFFFH is set when this is not being used.
214H	Connection 2	Receiving buffer starting address for transparent communication	3000H	 The first address in each buffer should be specified using 2800H to
215H		Receiving buffer size for transparent communication	0400H	3FFFH (word address). - See address "210H to 213H".
216H		Transmission buffer starting address for transparent communication	3400H	
217H		Transmission buffer size for transparent communication	0400H	
218H	Connection 3	Receiving buffer starting address for transparent communication	3800H	
219H		Receiving buffer size for transparent communication	0400H	
21AH		Transmission buffer starting address for transparent communication	3C00H	
21BH		Transmission buffer size for transparent communication	0400H	

next page

Address	Name		Default value	Set value and Explanation
21CH	Connection 4	Receiving buffer starting address for transparent communication	FFFFH	 The first address in each buffer should be specified using 2800H
21DH		Receiving buffer size for transparent communication	0000H	to 3FFFH (word address). - See address "210H to 213H".
21EH		Transmission buffer starting address for transparent communication	FFFFH	
21FH		Transmission buffer size for transpar- ent communication	0000H	
220H	Connection 5	Receiving buffer starting address for transparent communication	FFFFH	
221H		Receiving buffer size for transparent communication	0000H	
222H		Transmission buffer starting address for transparent communication	FFFFH	
223H		Transmission buffer size for transpar- ent communication	0000H	
224H	Connection 6	Receiving buffer starting address for transparent communication	FFFFH	
225H		Receiving buffer size for transparent communication	0000H	
226H		Transmission buffer starting address for transparent communication	FFFFH	
227H		Transmission buffer size for transpar- ent communication	0000H	
228H	Connection 7	Receiving buffer starting address for transparent communication	FFFFH	
229H		Receiving buffer size for transparent communication	0000H	
22AH		Transmission buffer starting address for transparent communication	FFFFH	
22BH		Transmission buffer size for transpar- ent communication	0000H	
22CH	Connection 8	Receiving buffer starting address for transparent communication	FFFFH	
22DH		Receiving buffer size for transparent communication	0000H	
22EH		Transmission buffer starting address for transparent communication	FFFFH	
22FH		Transmission buffer size for transpar- ent communication	0000H	

Routing information setting area (bank 0)

(Shared memory addresses are allocated in word units.)


Address	Name	Default value	Set value and Explanation
230H	Network (subnetwork) masking (L)	0000H	 FF000000H to FFFFFFCH: Field value that determines network address or subnetwork address. The network (subnetwork) mask is a value that sets the 32-bit network address used as the IP address and the bit used for the subnetwork address to "1". Example: FF000000H: For a Class A network
231H	Network (subnetwork) masking (H)	0000H	 1111 1111 1111 1111 1111 0000 0000 000

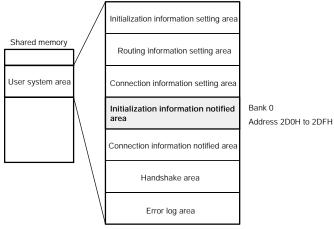
🖛 next page

Address	Name	Default value	Set value and Explanation
232H	Default router (Gateway) IP address (L)	0000H	 [Set value] Default router (gateway) IP address This is effective as long as the network (subnetwork) mask field is anything other than 0. If the default router (gateway) IP address has been set, communication will be car- ried out through the default router (gate- way) without an error occurring even if the class, network address, or subnetwork ad-
233H	Default router (Gateway) IP address (H)	0000H	 dress is different from that of the partner node. The network (subnetwork) address for the default router (gateway) IP address must be identical to the network (subnetwork) address for the source node IP address. If they are different, an error will occur. 00000000H and FFFFFFFH will cause errors to occur.
234H	Number of registering router	0000H	 [Set value] 0 to 5 This specifies the number of routers used on the source network. The default router (gateway) is not in- cluded in the number of registered routers. This is effective as long as the network (subnetwork) mask field is anything other than 0. Any value higher than 5 will be treated as 5. The number of network addresses and router IP addresses registered should not exceed the number specified here.
235H	Router 1 network (subnetwork) address (L)	0000H	[Set value] Network (subnetwork) address of partner node - This specifies the network (subnetwork) address for an adjacent network con-
236H	Router 1 network (subnetwork) address (H)	0000H	 address for an adjacent network contraction in adjacent network contraction in adjacent network contraction in a structure in the str
237H	Router 1 Router IP address (L)	0000H	 [Set value] Router IP address The network (subnetwork) address for the router address must be identical to the network (subnetwork) address for the
238H	Router 1 Router IP address (H)	0000H	source node IP address. If they are different, an error will occur.00000000H and FFFFFFFH will cause errors to occur.

Address	Name		Default value	Set value and Explanation
239H	Router 2	Network (subnetwork) address (L)	0000H	Refer to address "235H to 238H"
23AH		Network (subnetwork) address (H)		
23BH		Router IP address (L)		
23CH		Router IP address (H)		
23DH	Router 3	Network (subnetwork) address (L)	0000H	
23EH		Network (subnetwork) address (H)		
23FH		Router IP address (L)		
240H		Router IP address (H)		
241H	Router 4	Network (subnetwork) address (L)	0000H	
242H		Network (subnetwork) address (H)		
243H		Router IP address (L)		
244H		Router IP address (H)		
245H	Router 5	Network (subnetwork) address (L)	0000H	
246H		Network (subnetwork) address (H)		
247H		Router IP address (L)		
248H		Router IP address (H)		
249H		(Used by the system.)		
24AH	If any valu	ue is written to these, it should be 000	JOH.	
24BH				
24CH				
24DH				
24EH				
24FH				

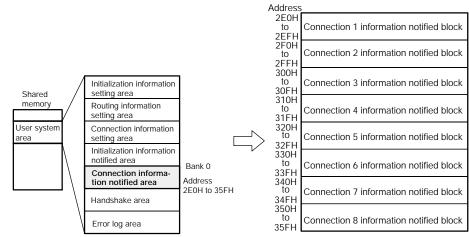
Connection information setting area (Bank 0)

Address


(Shared memory addresses are allocated in word units.)

Offset address

Offset Name address	Default value	Set value and Explanation
0 Setting area for application being used (connections 1 to 8)	0000H	 [Set value] 1 - word data that sets the communication conditions for the various connections as bit information. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ? 0 0 0 0 ? ? 0 0 0 0 0 ? ? (a) Communication (b) Open method 00: Active connection in which connection is used 0: TCP/IP 10: Unpassive 0: Used as MEWTOCOL 1: UDP/IP 11: Fullpassive 1: Used as transparent communication 1: Used as transparent communication (a) Communication method Specify whether the communication method for each connection is TCP/IP or UDP/IP. When using the data transfer function, always set TCP/IP. (b) Opening method TCP/IP was specified as the communication method. Active open: System waits for reception from a specified partner node in order to establish a connection. (c) Application in which connection is used When using computer linking or data transfer, set "0: MEWTOCOL communication". When using transparent communication, set "1: Transparent communication".


Offset address	Name	Default value	Set value and Explanation		
1	Source node port No. (connections 1 to 8)	0000H	 [Set value] TCP or UDP communication process port number. Set any port number other than 0H (a value of 1025 (401H) or higher is recommended). 		
2	Partner node IP address (L) (connections 1 to 8)	0000H	[Set value] Partner node IP address When using TCP Fullpassive and Active open: Specify an IP address for the partner node that is in the same class, and is other than 0H or FFFFFFFH. When using UDP:		
3	Partner node IP address (H) (connections 1 to 8)	0000H	Use an IP address for the partner node that is in the same class, and is other than 0H. When using TCP Unpassive open: No address needs to be specified.		
4	Partner node port No. (connections 1 to 8)	0000H	 [Set value] Partner node port number Set any port number other than 0H (a value of 1025 (401H) or higher is recommended). This is not necessary when using TCP Unpassive open. 		
5	Partner node MEWTOCOL station number (connections 1 to 8)	0000H	 [Set value] 1 to 64 Set the station number of the partner node when MEWTOCOL communication is being carried out. Avoid duplicating the number of another station on the network. This is ignored if MEWTOCOL communication is not being used 		
6 (lower word)	Partner node ethernet address (connections	0000H	 [Set value] Ethernet address of partner node When using TCP Active open, if the partner node has no ARP function, specify this. Example: When 1.2.3.4.5.6 is set, the offset addresses will be: 		
7	1 to 8)	0000H	6 0506H 7 0304H 8 0102H		
8 (higher word)		0000H	 When "0" or "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		
9 A	Reserved (Used When any value		stem.) to these, it should be 0000H.		
B C					
D	Receive request data size (connections 1 to 8)	0000H	 [Set value] Receive request data size (in byte units) This is specified when data is being received in transparent communication. No receive notification is made until data equal to the specified size has been received. If "FFFFH" is specified, direct reception is carried out (the receive complete signal goes on each time a packet is received). Specify a size such that the receive request data size is less than or equal to the size of the receive buffer x 2. 		
E	Reserved (Used by the system.) When any value is written to these, it should be 0000H.				
F	When any value Transmission	e is written 0000H	to these, it should be 0000H. [Set value] Transmission request data size (in byte units)		
	request data size (connections 1 to 8)	00000	 When data is being sent using transparent communication, specify the size of the data being sent in byte units. Specify a size such that the transmission request data size is less than or equal to the size of the transmission buffer x 2. 		

Initialization information notified area (bank 0)

(Shared memory addresses are allocated in word units.)

Address	Name	Stored value and Explanation
2D0H	Initialization processing complete code	[Stored value] 0: Initialization processing was completed successfully. Other than 0: Error code (initialization processing ended in an error)
2D1H	Source node IP address (L)	[Stored value] Source node IP address when initialization processing was completed successfully. - The written value is the source node address in the initialization
2D2H	Source node IP address (H)	 information setting area. The value is not vaild until initialization processing has been completed successfully.
2D3H	Communication function setting between networks	 [Stored value] 0: Communication function setting between networks is not used. 1: Communication function setting between networks is used. The value is not valid until initialization processing has been completed successfully.
2D4H	Source node MEWTOCOL station number	 [Stored value] Source node MEWTOCOL station number when initialization processing has been completed successfully. The written value is the source node MEWTOCOL station number in the initialization information setting area. The value is not valid until initialization processing has been completed successfully.
2D5H (lower word)	Source node ethernet address (48 bits)	[Stored value] Source node Ethernet address in the EEPROM Example: When 1.2.3.4.5.6 has been set: 2D5H 0506H
2D6H		2D6H 0304H 2D7H 0102H
2D7H (higher word)		 The value is not valid until initialization processing has been com- pleted successfully.
2D8H	Reserved (Used by the sy	stem.)
2D9H		
2DAH		
2DBH		
2DCH		
2DDH		
2DEH		
2DFH		

Connection information notified area (bank 0)

(Shared memory addresses are allocated in word units.)

Offset address

Offset address	Name	Stored value and Explanation
0	Open processing complete code (connections 1 to 8)	 [Stored value] 0: Open processing has been completed successfully. Other than 0: Error code (when open processing ended in an error) If re-open processing is carried out, the results are overwritten. Error codes are also stored in the error log area.
1	Source node port No. (connections 1 to 8)	[Stored value] Source node port numbers for various connections after open processing has been completed.The value is not valid until open processing has been successfully completed.
2	Partner node IP address (L) (connections 1 to 8)	[Stored value] Partner node IP addresses for various connections after open processing has been completed. - The value is not valid until open processing has been successfully completed.
3	Partner node IP address (H) (connections 1 to 8)	
4	Partner node port No. (connections 1 to 8)	 [Stored value] Partner node IP port numbers for various connections after open processing has been completed. The value is not valid until open processing has been successfully completed.
5	Partner node MEWTOCOL station number (connections 1 to 8)	 [Stored value] Partner node MEWTOCOL station numbers for various connections after open processing has been completed. The value is not valid until open processing has been successfully completed.
6 to 9	Reserved (Used by the syste	m.)

next page

Offset address	Name	Stored value and Explanation
A	Transparent receive processing complete code (connections 1 to 8)	[Stored value] 0: Receive processing completed normally. Other than 0: Error code (when the receive processing ended in an error) - Result is overwritten when receive processing is done again. - The error code is stored in the error log area.
В	Transparent receive unnotified data size (connections 1 to 8)	 [Stored value] Size of the transparent received data remaining in the ET - LAN unit (in bytes). Receive processing for this amount of data will finish normally and receive requests accepted even if the connection is closed.
С	Transparent receive unnotified data size copy (connections 1 to 8)	 [Stored value] Copy of the size of the transparent received data remaining in the ET-LAN unit (in bytes). The same value as the transparent receive unnotified data size above is stored. If the two values match, the size of the transparent receive data will be fixed, so after they match, send a receive request using this value.
D	Transparent receive notified data size (connections 1 to 8)	 [Stored value] Size of the data actually received for the receive request in transparent communication (in byte units) It is not possible for this value to be notified as exceeding the receive request data size. When the connection has been closed, receive processing may end in some cases even if the receive request data size has not been satisfied. If this happens, this value is notified as being less than the receive request data size.
E	Transparent transmission processing complete code (connections 1 to 8)	 [Stored value] 0: Transmission processing has been completed successfully. Other than 0: Error code (when transmission processing ended in an error) When transmission processing is carried out again, the results are overwritten. Error codes are also stored in the error log area.
F	Transparent transmission complete data size (connections 1 to 8)	 [Stored value] Size of the data actually sent to the partner node for the transmission request in transparent communication (in byte units) It is not possible for this value to be notified as exceeding the transmission request data size. If the connection has been closed by the partner node during the transmission, the transmission may be aborted. If this happens, this value is notified as being less than the transmission request data size. If close processing is requested by the source node during the transmission, the transmission processing is carried out first, and then close processing is carried out. Even if the transmission processing ends in an error for some reason, transmission processing of the size of data corresponding to this value is completed normally.

Handshake area Complete signal area (bank 0)

bit 1Receive complete signal (Connection 1)bit 2Transmission complete signal (Connection 1)bit 3Transmission error signal (Connection 1)bit 4Receive notified signal (Connection 2)bit 5Receive complete signal (Connection 2)bit 6Transmission complete signal (Connection 2)bit 7Transmission complete signal (Connection 2)bit 8Receive notified signal (Connection 3)bit 9Receive complete signal (Connection 3)bit 9Receive complete signal (Connection 3)bit 9Receive complete signal (Connection 3)bit 9Iransmission error signal (Connection 3)bit 10Initialization complete signal (Connection 3)bit 10Initialization error signalbit 2Initialization error signalbit 4Error log notified complete signal	Address		Description	
bit 2Transmission complete signal (Connection 1)bit 3Transmission error signal (Connection 1)bit 4Receive notified signal (Connection 2)bit 5Receive complete signal (Connection 2)bit 6Transmission complete signal (Connection 2)bit 7Transmission error signal (Connection 2)bit 8Receive complete signal (Connection 3)bit 9Receive complete signal (Connection 3)bit 7Transmission error signal (Connection 3)bit 8Receive complete signal (Connection 3)bit 9Receive complete signal (Connection 3)bit 10Initialization complete signal (Connection 3)bit 11Dine error signal (Connection 1)bit 2Open complete signal (Connection 2)bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 2)bit 5Open error signal (Connection 2)bit 6Open error signal (Connection 2)bit 7Open error signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open complete signal (Connection 3)bit 7Open error signal (Connection 3)bit 6Open complete signal (Connection 4)bit 7Open error signal (Connection 5)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 6)bit 9Open error signal (Connection 6)bit 0Open error signal (Connection 7)bit 0Open error signal (Connection 7)bit 0Open error signal (Connection 7) <t< th=""><th>360H</th><th>bit 0</th><th>Receive notified signal (Connection 1)</th><th></th></t<>	360H	bit 0	Receive notified signal (Connection 1)	
bit 3Transmission error signal (Connection 1)bit 4Receive notified signal (Connection 2)bit 5Receive complete signal (Connection 2)bit 6Transmission complete signal (Connection 2)bit 7Transmission error signal (Connection 2)bit 8Receive complete signal (Connection 3)bit 9Receive complete signal (Connection 3)bit 7Transmission error signal (Connection 3)bit 8Receive complete signal (Connection 3)bit 9Receive complete signal (Connection 3)bit 10Initialization error signal (Connection 3)bit 11Initialization error signalbit 2Open complete signal (Connection 1)bit 2Open complete signal (Connection 2)bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 2)bit 5Open error signal (Connection 2)bit 6Open complete signal (Connection 2)bit 7Open error signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open complete signal (Connection 3)bit 7Open error signal (Connection 3)bit 8Open complete signal (Connection 4)bit 7Open error signal (Connection 5)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 6)bit 9Open error signal (Connection 6)bit 0Open error signal (Connection 7)bit 0Open error signal (Connection 7)bit 0Open error signal (Connection 7)bit 0<		bit 1	Receive complete signal (Connection 1)	
bit 4Receive notified signal (Connection 2)bit 5Receive complete signal (Connection 2)bit 6Transmission complete signal (Connection 2)bit 7Transmission error signal (Connection 2)bit 8Receive notified signal (Connection 3)bit 9Receive complete signal (Connection 3)bit 4Transmission complete signal (Connection 3)bit 5Receive complete signal (Connection 3)bit 6Intransmission error signal (Connection 3)bit 7Initialization complete signal (Connection 3)bit 6Initialization error signalbit 7Error log notified complete signalbit 7Open complete signal (Connection 1)bit 2Open complete signal (Connection 1)bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 2)bit 5Open error signal (Connection 2)bit 6Open complete signal (Connection 3)bit 7Open error signal (Connection 3)bit 6Open complete signal (Connection 3)bit 7Open error signal (Connection 3)bit 8Open complete signal (Connection 4)bit 9Open error signal (Connection 5)bit 4Open complete signal (Connection 5)bit 7Open error signal (Connection 6)bit 8Open error signal (Connection 6)bit 9Open error signal (Connection 7)bit 0Open error signal (Connection 7)bit 0Open error signal (Connection 7)bit 10Open error signal (Connection 7)bit 2 <th></th> <th>bit 2</th> <th>Transmission complete signal (Connection 1)</th> <th></th>		bit 2	Transmission complete signal (Connection 1)	
bit 5 Receive complete signal (Connection 2) bit 6 Transmission complete signal (Connection 2) bit 7 Transmission error signal (Connection 2) bit 8 Receive notified signal (Connection 3) bit 9 Receive complete signal (Connection 3) bit 4 Transmission complete signal (Connection 3) bit 5 Receive complete signal (Connection 3) bit 6 Initialization complete signal (Connection 3) bit 7 Initialization complete signal bit 6 Initialization error signal (Connection 1) bit 7 Initialization error signal (Connection 1) bit 7 Open complete signal (Connection 2) bit 1 Open error signal (Connection 1) bit 2 Open complete signal (Connection 2) bit 3 Open error signal (Connection 2) bit 4 Open complete signal (Connection 3) bit 5 Open error signal (Connection 3) bit 6 Open complete signal (Connection 3) bit 7 Open error signal (Connection 4) bit 7 Open error signal (Connection 5) bit 8 Open complete signal (Connection 5) bit 9 Open error signal (Connection 6) <th></th> <th>bit 3</th> <th>Transmission error signal (Connection 1)</th> <th></th>		bit 3	Transmission error signal (Connection 1)	
bit 6 Transmission complete signal (Connection 2) bit 7 Transmission error signal (Connection 2) bit 8 Receive notified signal (Connection 3) bit 9 Receive complete signal (Connection 3) bit 4 Transmission complete signal (Connection 3) bit 5 Receive complete signal (Connection 3) bit 6 Initialization complete signal (Connection 3) bit 1 Initialization error signal (Connection 3) bit 2 Initialization error signal (Connection 1) bit 1 Dipen error signal (Connection 1) bit 2 Open complete signal (Connection 2) bit 3 Open error signal (Connection 1) bit 4 Open complete signal (Connection 2) bit 5 Open error signal (Connection 3) bit 4 Open complete signal (Connection 3) bit 5 Open error signal (Connection 3) bit 6 Open complete signal (Connection 4) bit 7 Open error signal (Connection 5) bit 8 Open complete signal (Connection 5) bit 9 Open error signal (Connection 6) bit 10 Open error signal (Connection 6)		bit 4	Receive notified signal (Connection 2)	
bit 7Transmission error signal (Connection 2)bit 8Receive notified signal (Connection 3)bit 9Receive complete signal (Connection 3)bit 4Transmission complete signal (Connection 3)bit 5Transmission error signal (Connection 3)bit 6Initialization complete signal (Connection 3)bit 7Initialization error signalbit 7Error log notified complete signalbit 7Open complete signal (Connection 1)bit 2Open error signal (Connection 1)bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open error signal (Connection 3)bit 7Open error signal (Connection 3)bit 8Open complete signal (Connection 3)bit 9Open error signal (Connection 3)bit 6Open error signal (Connection 3)bit 7Open error signal (Connection 4)bit 7Open error signal (Connection 5)bit 8Open complete signal (Connection 6)bit 9Open error signal (Connection 6)bit 10Open error signal (Connection 6)bit 11Open error signal (Connection 7)bit 12Open error signal (Connection 7)bit 13Open error signal (Connection 7)bit 14Open error signal (Connection 7)bit 15Open error signal (Connection 7)bit 16Open error signal (Connection 7)bit 15Open error signal (Connection 7)		bit 5	Receive complete signal (Connection 2)	
bit 8Receive notified signal (Connection 3)bit 9Receive complete signal (Connection 3)bit 4Transmission complete signal (Connection 3)bit BTransmission error signal (Connection 3)bit CInitialization complete signalbit DInitialization error signalbit Ebit FError log notified complete signalbit 1Open complete signal (Connection 1)bit 2Open complete signal (Connection 1)bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open complete signal (Connection 3)bit 7Open error signal (Connection 3)bit 8Open complete signal (Connection 4)bit 9Open error signal (Connection 5)bit 4Open complete signal (Connection 5)bit 5Open error signal (Connection 5)bit 4Open complete signal (Connection 6)bit 5Open error signal (Connection 6)bit 6Open error signal (Connection 7)bit 7Open error signal (Connection 7)bit 6Open error signal (Connection 7)		bit 6	Transmission complete signal (Connection 2)	
bit 9Receive complete signal (Connection 3)bit ATransmission complete signal (Connection 3)bit BTransmission error signal (Connection 3)bit CInitialization complete signalbit DInitialization error signalbit E—bit FError log notified complete signal361Hbit 0Open complete signal (Connection 1)bit 1Open error signal (Connection 1)bit 2Open error signal (Connection 2)bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open error signal (Connection 4)bit 7Open error signal (Connection 5)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit 4Open complete signal (Connection 6)bit 5Open error signal (Connection 6)bit 6Open error signal (Connection 7)bit 10Open error signal (Connection 7)bit 12Open error signal (Connection 7)		bit 7	Transmission error signal (Connection 2)	
bit A Transmission complete signal (Connection 3) bit B Transmission error signal (Connection 3) bit C Initialization complete signal bit D Initialization error signal bit E — bit F Error log notified complete signal bit 0 Open complete signal (Connection 1) bit 1 Open error signal (Connection 1) bit 2 Open complete signal (Connection 2) bit 3 Open error signal (Connection 2) bit 4 Open complete signal (Connection 3) bit 5 Open error signal (Connection 3) bit 6 Open complete signal (Connection 4) bit 7 Open error signal (Connection 4) bit 8 Open complete signal (Connection 5) bit 9 Open error signal (Connection 5) bit 4 Open complete signal (Connection 6) bit 7 Open error signal (Connection 6) bit 8 Open error signal (Connection 7) bit 0 Open error signal (Connection 7) <th></th> <th>bit 8</th> <th>Receive notified signal (Connection 3)</th> <th></th>		bit 8	Receive notified signal (Connection 3)	
bit BTransmission error signal (Connection 3)bit CInitialization complete signalbit DInitialization error signalbit E—bit FError log notified complete signal361Hbit 0Open complete signal (Connection 1)bit 1Open error signal (Connection 1)bit 2Open complete signal (Connection 2)bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open error signal (Connection 4)bit 7Open error signal (Connection 5)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit 4Open complete signal (Connection 6)bit 5Open error signal (Connection 7)bit 6Open error signal (Connection 7)bit 7Open error signal (Connection 7)bit 9Open error signal (Connection 7)bit 0Open error signal (Connection 7)		bit 9	Receive complete signal (Connection 3)	
bit CInitialization complete signalbit DInitialization error signalbit E—bit FError log notified complete signal361Hbit 0Open complete signal (Connection 1)bit 1Open error signal (Connection 1)bit 2Open complete signal (Connection 2)bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open complete signal (Connection 4)bit 7Open error signal (Connection 4)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit 4Open complete signal (Connection 5)bit 5Open error signal (Connection 6)bit 6Open error signal (Connection 7)bit 7Open error signal (Connection 7)bit 6Open error signal (Connection 7)		bit A	Transmission complete signal (Connection 3)	11
bit D Initialization error signal bit E bit F Error log notified complete signal 361H bit 0 Open complete signal (Connection 1) bit 1 Open error signal (Connection 1) bit 2 Open complete signal (Connection 2) bit 3 Open error signal (Connection 2) bit 4 Open complete signal (Connection 3) bit 5 Open error signal (Connection 3) bit 6 Open complete signal (Connection 4) bit 7 Open error signal (Connection 5) bit 8 Open complete signal (Connection 5) bit 9 Open error signal (Connection 5) bit 4 Open complete signal (Connection 6) bit 7 Open error signal (Connection 6) bit 8 Open complete signal (Connection 7) bit 9 Open error signal (Connection 7) bit 0 Open error signal (Connection 7) bit 2 Open complete signal (Connection 7) bit 4 Open complete signal (Connection 7)		bit B	Transmission error signal (Connection 3)	
bit Ebit FError log notified complete signal361Hbit 0Open complete signal (Connection 1)bit 1Open error signal (Connection 1)bit 2Open complete signal (Connection 2)bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open complete signal (Connection 4)bit 7Open error signal (Connection 4)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit 0Open error signal (Connection 6)bit 1Open error signal (Connection 6)bit 2Open error signal (Connection 7)bit 5Open error signal (Connection 7)bit 6Open complete signal (Connection 7)		bit C	Initialization complete signal	
bit FError log notified complete signal361Hbit 0Open complete signal (Connection 1)bit 1Open error signal (Connection 1)bit 2Open complete signal (Connection 2)bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open complete signal (Connection 4)bit 7Open error signal (Connection 4)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit 0Open complete signal (Connection 6)bit 1Open complete signal (Connection 6)bit 2Open error signal (Connection 7)bit 5Open error signal (Connection 7)bit 6Open complete signal (Connection 7)		bit D	Initialization error signal	
361Hbit 0Open complete signal (Connection 1)bit 1Open error signal (Connection 1)bit 2Open complete signal (Connection 2)bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open complete signal (Connection 4)bit 7Open error signal (Connection 4)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit 4Open complete signal (Connection 6)bit 5Open error signal (Connection 6)bit 6Open error signal (Connection 7)bit 0Open error signal (Connection 7)bit 2Open complete signal (Connection 7)bit 3Open complete signal (Connection 7)		bit E	—	
bit 1Open error signal (Connection 1)bit 2Open complete signal (Connection 2)bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open complete signal (Connection 4)bit 7Open error signal (Connection 4)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit 4Open complete signal (Connection 6)bit 5Open error signal (Connection 6)bit 6Open error signal (Connection 7)bit 0Open error signal (Connection 7)bit 10Open complete signal (Connection 7)bit 20Open complete signal (Connection 7)bit 30Open error signal (Connection 7)		bit F	Error log notified complete signal	
bit 2Open complete signal (Connection 2)bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open complete signal (Connection 4)bit 7Open error signal (Connection 4)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit 4Open complete signal (Connection 6)bit 5Open error signal (Connection 6)bit 6Open error signal (Connection 7)bit 0Open error signal (Connection 7)bit 10Open complete signal (Connection 7)bit 20Open complete signal (Connection 7)bit 30Open error signal (Connection 7)	361H	bit 0	Open complete signal (Connection 1)	
bit 3Open error signal (Connection 2)bit 4Open complete signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open complete signal (Connection 4)bit 7Open error signal (Connection 4)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit AOpen complete signal (Connection 6)bit BOpen error signal (Connection 6)bit COpen complete signal (Connection 7)bit DOpen error signal (Connection 7)bit EOpen complete signal (Connection 8)		bit 1	Open error signal (Connection 1)	
bit 4Open complete signal (Connection 3)bit 5Open error signal (Connection 3)bit 6Open complete signal (Connection 4)bit 7Open error signal (Connection 4)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit AOpen complete signal (Connection 6)bit BOpen error signal (Connection 6)bit COpen complete signal (Connection 7)bit DOpen error signal (Connection 7)bit EOpen complete signal (Connection 8)		bit 2	Open complete signal (Connection 2)	
bit 5Open error signal (Connection 3)bit 6Open complete signal (Connection 4)bit 7Open error signal (Connection 4)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit AOpen complete signal (Connection 6)bit BOpen error signal (Connection 6)bit COpen complete signal (Connection 7)bit DOpen error signal (Connection 7)bit EOpen complete signal (Connection 8)		bit 3	Open error signal (Connection 2)	
bit 6Open complete signal (Connection 4)bit 7Open error signal (Connection 4)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit AOpen complete signal (Connection 6)bit BOpen error signal (Connection 6)bit COpen complete signal (Connection 7)bit DOpen error signal (Connection 7)bit EOpen complete signal (Connection 8)		bit 4	Open complete signal (Connection 3)	
bit 7Open error signal (Connection 4)bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit AOpen complete signal (Connection 6)bit BOpen error signal (Connection 6)bit COpen complete signal (Connection 7)bit DOpen error signal (Connection 7)bit EOpen complete signal (Connection 8)		bit 5	Open error signal (Connection 3)	
bit 8Open complete signal (Connection 5)bit 9Open error signal (Connection 5)bit AOpen complete signal (Connection 6)bit BOpen error signal (Connection 6)bit COpen complete signal (Connection 7)bit DOpen error signal (Connection 7)bit EOpen complete signal (Connection 8)		bit 6	Open complete signal (Connection 4)	
bit 9Open error signal (Connection 5)bit AOpen complete signal (Connection 6)bit BOpen error signal (Connection 6)bit COpen complete signal (Connection 7)bit DOpen error signal (Connection 7)bit EOpen complete signal (Connection 8)		bit 7	Open error signal (Connection 4)	
bit AOpen complete signal (Connection 6)bit BOpen error signal (Connection 6)bit COpen complete signal (Connection 7)bit DOpen error signal (Connection 7)bit EOpen complete signal (Connection 8)		bit 8	Open complete signal (Connection 5)	
bit BOpen error signal (Connection 6)bit COpen complete signal (Connection 7)bit DOpen error signal (Connection 7)bit EOpen complete signal (Connection 8)		bit 9	Open error signal (Connection 5)	
bit COpen complete signal (Connection 7)bit DOpen error signal (Connection 7)bit EOpen complete signal (Connection 8)		bit A	Open complete signal (Connection 6)	
bit DOpen error signal (Connection 7)bit EOpen complete signal (Connection 8)		bit B	Open error signal (Connection 6)	
bit E Open complete signal (Connection 8)		bit C	Open complete signal (Connection 7)	
		bit D	Open error signal (Connection 7)	
bit F Open error signal (Connection 8)		bit E	Open complete signal (Connection 8)	
		bit F	Open error signal (Connection 8)	

Expanded complete signal area (bank 0)

Address		Description
364H bit 0		Receive notified signal (Connection 1)
	bit 1	Receive complete signal (Connection 1)
	bit 2	Transmission complete signal (Connection 1)
	bit 3	Transmission error signal (Connection 1)
	bit 4	Receive notified signal (Connection 2)
	bit 5	Receive complete signal (Connection 2)
	bit 6	Transmission complete signal (Connection 2)
	bit 7	Transmission error signal (Connection 2)
	bit 8	Receive notified signal (Connection 3)
	bit 9	Receive complete signal (Connection 3)
	bit A	Transmission complete signal (Connection 3)
	bit B	Transmission error signal (Connection 3)
	bit C	Receive notified signal (Connection 4)
	bit D	Receive complete signal (Connection 4)
	bit E	Transmission complete signal (Connection 4)
	bit F	Transmission error signal (Connection 4)
365H	bit 0	Receive notified signal (Connection 5)
	bit 1	Receive complete signal (Connection 5)
	bit 2	Transmission complete signal (Connection 5)
	bit 3	Transmission error signal (Connection 5)
	bit 4	Receive notified signal (Connection 6)
	bit 5	Receive complete signal (Connection 6)
	bit 6	Transmission complete signal (Connection 6)
	bit 7	Transmission error signal (Connection 6)
	bit 8	Receive notified signal (Connection 7)
	bit 9	Receive complete signal (Connection 7)
	bit A	Transmission complete signal (Connection 7)
	bit B	Transmission error signal (Connection 7)
	bit C	Receive notified signal (Connection 8)
	bit D	Receive complete signal (Connection 8)
	bit E	Transmission complete signal (Connection 8)
	bit F	Transmission error signal (Connection 8)
366H	bit 0	Receive error signal (Connection 1)
	bit 1	Receive error signal (Connection 2)
	bit 2	Receive error signal (Connection 3)
	bit 3	Receive error signal (Connection 4)
	bit 4	Receive error signal (Connection 5)
	bit 5	Receive error signal (Connection 6)
	bit 6	Receive error signal (Connection 7)
	bit 7	Receive error signal (Connection 8)
	bit 8	Reserved
	to bit F	
	DILF	

🖛 next page

The same signal (for example, the connection 1 Receive notified signal 360H bit 0 and 364H bit 0) can be used in both the signal complete area and the expanded complete signal area. It does not matter which signal is used in which area.

(Connection 1)

(Connection 2)

(Connection 3)

(Connection 4)

(Connection 5)

(Connection 6)

(Connection 7)

Transmission request signal (Connection 8)

Address		Description		ress	Description
368H	bit 0	Receive request signal (Connection 1)	36CH	bit 0	Receive request signal (Connection 1)
	bit 1	—		bit 1	—
	bit 2	Transmission request signal (Connection 1)	11	bit 2	Transmission request signal (Connection
	bit 3	—		bit 3	—
	bit 4	Receive request signal (Connection 2)		bit 4	Receive request signal (Connection 2)
	bit 5	—		bit 5	—
	bit 6	Transmission request signal (Connection 2)] [bit 6	Transmission request signal (Connectio
	bit 7	—		bit 7	—
	bit 8	Receive request signal (Connection 3)		bit 8	Receive request signal (Connection 3)
	bit 9	—] [bit 9	—
	bit A	Transmission request signal (Connection 3)		bit A	Transmission request signal (Connectio
	bit B	—		bit B	—
	bit C	Initialization request signal		bit C	Receive request signal (Connection 4)
	bit D	—	11	bit D	—
	bit E	Error LED flash off signal (See note.)		bit E	Transmission request signal (Connection
	bit F	Error log notified request signal		bit F	—
369H	bit 0	Open request signal (Connection 1)	36DH	bit 0	Receive request signal (Connection 5)
	bit 1	—		bit 1	—
	bit 2	Open request signal (Connection 2)		bit 2	Transmission request signal (Connectio
	bit 3	—		bit 3	—
	bit 4	Open request signal (Connection 3)	11	bit 4	Receive request signal (Connection 6)
	bit 5	—		bit 5	—
	bit 6	Open request signal (Connection 4)		bit 6	Transmission request signal (Connection
	bit 7	-		bit 7	—
	bit 8	Open request signal (Connection 5)		bit 8	Receive request signal (Connection 7)
	bit 9	—		bit 9	—
	bit A	Open request signal (Connection 6)		bit A	Transmission request signal (Connection
	bit B	-		bit B	—
	bit C	Open request signal (Connection 7)		bit C	Receive request signal (Connection 8)
	bit D	—		bit D	-

Request signal area (bank 0)

Expanded request signal area (bank 0)

Notes

bit E

bit F

Open request signal (Connection 8)

The same signal (for example, the connection 1 Receive • request signal 368H bit 0 and 36CH bit 0) can be used in both the signal complete area and the expanded complete signal area. It does not matter which signal is used in which area.

bit E

bit F

If the Error LED flash off signal (368H bit E) is turned on, the • flashing LEDs for E1 and E2 go out. Also, while the Error LED flash off signal (368H bit E) is on, the LEDs for E1 and E2 will not flash, even if a recoverable error or a warning error occurs. However, these functions are not affected by error log processing, so the error contents remain in the log.

Error log area (bank 0)

/	Initialization information setting area	
Shared memory	Routing information setting area	
User system area	Connection information setting area	
	Initialization information notified area	
	Connection information notified area	
	Handshake area	
/	Error log area	Bank 0 Address 380H to 3FFH

(Shared memory addresses are allocated in word units.)

Address	Name	Explanation			
380H	Log mode	[Set value] [Default value: 0003H] The recorded error differs depending on the set value.			
		Set value 0 1 2 3			
		System error Available Available Available Available			
		Recovery possible error Not available Available Available Available			
		Warning error Not available Not available Available Available			
		Acces error Not available Not available Not available Available			
381H	Log block reading pointer	 [Set value] Offset from latest log block of log buffer [Default value: 0000H] To read the latest log block, "0" is specified. To read the oldest log block used, "Number of log blocks used - 1" is specified (see 387H below). This value should be set such that the number of log blocks used is greater than or equal to the log reading pointer + the number of log block being read. If anything else is specified, the results will be unclear. 			
382H	Number of reading log block	 [Set value] No. of reading blocks [Default value: 0000H] This specifies the number of blocks up to the old block to be read from the log block reading point. A value of 14 or less should be set. If a value of 15 or higher is set, or if 0 is set, 14 blocks will be read. 			
383H 384H	Reserved (Used by the system.)				
385H	Log buffer size	y buffer size [Stored value] Log buffer size available with the unit itself (number of log blocks) [Set value: 0100H (256 blocks)] - This is set by the unit itself when it boots.			
386H	Total number of log	 [Stored value] Cumulative total of log blocks recorded after initialization processing This is cleared to 0 when initialization processing is carried out. The number of logs is counted up to FFFFH (65535), but if an attempt is made to record more logs than will fit into the available buffer space, logs are overwritten, starting with the oldest. The number of logs will not be incremented past FFFFH (65535). 			
387H	Number of log blocks used	 [Stored value] Current number of log blocks available for reading in log buffer This is cleared to 0 when initialization processing is carried out. The count of the number of logs used will not be incremented past the buffer size. 			

Address	Name	Explanation
388H to 38FH	Latest log block area (8 words)	 [Stored value] Latest log information The unit itself updates the contents constantly, so information can be read using the shared memory access instructions F150 (READ) and P150 (PREAD), without issuing a read request. This is cleared to 0 when initialization processing is carried out.
390H to 3FFH	Log block reading processing area (8 words × 14 blocks)	 [Stored value] Data read during log block read processing Up to 14 blocks are stored in the log, in the order in which the errors occurred, when a read request is issued (the error log notified request bit of the hand-shake area in the I/O or shared memory goes on). This is cleared to 0 when initialization processing is carried out.

Notes

- Addresses 380H to 382H should be set before the error log notified request is issued.
- The ET-LAN unit writes the latest values to addresses 385H to 38FH.
- The ET-LAN unit writes values to addresses 390H to 3FFH after the error log notified request has been issued.

13.4 Table of Related Relays, Registers and Instructions

13.4 Table of Related Relays, Registers and Instructions

13.4.1 System Register

Item	Address	Name	Default value	Description (*)
Action on error for	22	Operation settings when an intelligent unit error occurs	Stop	Stop/continuation
FP2 and FP2SH	23	Operation settings when an I/O verification error occurs	Stop	Stop/continuation
Time	29	Operation time setting for communication processing	240 μs	0 to 52428 μs
setting for FP2SH				The setting for this system register is effective in the RUN mode only.
				In the PROG. mode and "0" setting, the allowable duration of time used for communication processing is set at 52428 μs.
				Setting time can be obtained using the formula "Set time" = "Set value" × 0.8 (µs)
	31	Multi-frame communication time settings in the computer link and communication time setting for data sending buff- er	6500 ms	10 to 81917.5 ms
				Use of default setting (6500 ms) is recommended.
				Setting time can be obtained using the formula "Set time" ="Set value" × 2.5 (ms)
	32	Time-out time setting for the F145 (SEND)/P145 (PSEND), F146 (RECV)/P146 (PRECV), F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/ P153 (PRMWT) instructions	10000 ms	10 to 81917.5 ms
				Use of default setting (10000 ms) is recommended.
				Setting time can be obtained using the formula "Set time" ="Set value" × 2.5 (ms)
Time	31	Multi-frame communication time settings in the computer link	6500 ms	10.0 ms to 8190.0 ms
setting for FP2				Use the default setting (6500 ms).
	32	Time-out time setting for the F145 (SEND)/P145 (PSEND), F146 (RECV)/P146 (PRECV), F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/ P153 (PRMWT) instructions	2000 ms	10.0 ms to 8190.0 ms
				Use the default setting (2000 ms).

* When setting with the NPST-GR, Ver. 4 or a subsequent version is required.

13.4.2 **Special Internal Relay**

Address	Name	Description
R9003	Intelligent unit error flag	Turns on when an error occurs in an intelligent unit. The slot number, where the erroneous intelligent unit is installed is stored in:
		- FP3: DT9006 and DT9007
		- FP2/FP2SH/FP10SH: DT90006, DT90007
R9004	I/O verification error flag	Turns on when an I/O verification error occurs.
		The slot number of the I/O unit where the verification error was occurred is stored in:
		- FP0/FP3: DT9010 and DT9011
		- FP2/FP2SH/FP10SH: DT90010, DT90011
R9030	F145 (SEND)/P145 (PSEND) and F146	Monitors if CPU is in the F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV) instructions executable condition as follows:
	(RECV)/P146 (PRECV) instruction executing flag	- off: None of the above mentioned instructions can be executed.
	inen denen encouning nag	- on: One of the above mentioned instructions can be executed.
R9031	F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV)	Monitors if an abnormality has been detected during the execution of the F145 (SEND)/ P145 (PSEND) and F146 (RECV)/P146 (PRECV) instructions as follows:
	instruction end flag	 off: No abnormality detected.
	(Available PLC: FP2/FP2SH/FP3/FP10SH)	- on: An abnormality detected. (communication error)
		The error code is stored in:
		- FP3: DT9039
		- FP2/FP10SH: DT90039
R9055	Intelligent communication unit 1 transmission error	 Turns on when the Error LED lights on the intelligent communication unit.
	flag (*1 and *2)	- Turns on when there is an error in the unit No. settings.
R9056	Intelligent communication unit 2 transmission error flag (*1 and *2)	
R9057	Intelligent communication unit 3 transmission error flag (*1 and *2)	

Notes

- 1) The following units are included in the intelligent communication unit:
 - ET-LAN unit
 - Multi-wire link unit (MEWNET-W2 mode)
- 2) Numbered 1, 2, 3 starting from the slot nearest the CPU unit.

13.4 Table of Related Relays, Registers and Instructions

13.4.3 Special Data Register

Address		Name	Description			
FP3	FP2/ FP2SH/ FP10SH					
DT9006	DT90006	Abnormal intelligent unit (slot No. 0 to 15)	When an error condition is detected in an intelligent unit, the bit corresponding to the slot of the unit will be set to on. Monitor using binary display. (1: abnormal intelligent unit, 0: normal intelliget unit) Bit position 15			
DT9007	DT90007	Abnormal intelligent unit (slot No. 16 to 31)	Slot number 15 . 12 11 . 8 7 . 4 3 . 0 DT9006/DT90006 I I I I I I I III IIII IIII IIII IIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			
DT9039	DT90039	F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV) instructions end code	The error code is stored here if F145 (SEND)/ P145 (PSEND) or F146 (RECV)/P146 (PRECV) instruction was executed abnormally. When the instruction was successfully executed, "0" is stored.			
DT9195	DT90195	Intelligent communication unit 1 unit number (*1 and *2)	The link status is monitored as:			
DT9196	DT90196	Intelligent communication unit 2 unit number (*1 and *2)	Link status (*3) Unit number			
DT9197	DT90197	Intelligent communication unit 3 unit number (*1 and *2)				

Notes

- 1) The following units are included in the intelligent communication unit:
 - ET-LAN unit
 - Multi-wire link unit (MEWNET-W2 mode)
- 2) Numbered 1, 2, 3 starting from the slot nearest the CPU unit.
- 3) Used by the system.

13.4.4 Data Transfer Instructions

Data Send Instructions: F145 (SEND) and P145 (PSEND)

Sends data to another PLC and computer through MEWNET link modules in the network.

Program example

Number of steps: 9

Ladder Diegrom	Boolean				
Ladder Diagram	Address	Inst	ruction		
Trigger	10	ST	R 0		
r+1	11	F145	(SEND)		
R0		DT	10		
10 - F145 SEND, DT10 , DT20 , DT 0 , K 100]		DT	20		
		DT	0		
S1 S2 D N		к	100		

S1	Starting 16-bit area for storing control data
S2	Starting 16-bit area for storing source data (data area at the local station)
D	Type of destination operands for storing data in the remote station. Be sure to select the area by setting address 0 (destination data area at another station).
Ν	Starting 16-bit area address for the destination operand specified in D above (destination data area in another station).

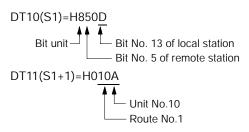
Operands

Operand		Re	lay		Timer/0	Timer/Counter		Register			Index register		stant	Index
Operand	wx	WY	WR	WL	sv	EV	DT	LD	FL	IX (* 1)	IY (* 2)	к	н	modifier
S1	А	А	А	А	А	А	А	А	А	N/A	N/A	N/A	N/A	А
S2	А	А	А	А	А	А	А	А	А	N/A	N/A	N/A	N/A	А
D	N/A	А	А	А	А	А	А	А	А	N/A	N/A	N/A	N/A	N/A
Ν	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А

(*1) With the FP2, FP2SH, and FP10SH, this is I0 to IC.

(*2) With the FP2, FP2SH, and FP10SH, this is ID.

Explanation of example


① Example of word unit transmission When the control data is as follows:

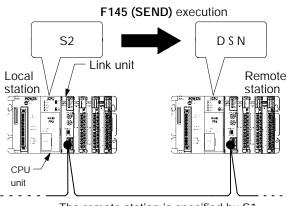
> DT10(S1)=H0005 (=K5) Word unit 5 words DT11(S1+1)=H010A Unit No.10 Route No.1

the 5 words of data from DT20 to DT24 are sent to DT100 to DT104 of unit No. 10, which is connected to route No. 1, when the internal relay R0 turns on.

A: Available N/A: Not Available

Example of bit unit transmission
 When the control data is as follows:

the on and off information of Bit No. 13 of DT20 is sent to Bit No. 5 of DT100 of Unit No. 10, which is connected to route No. 1, when the internal relay R0 turns on.


If the network is configured only of the FP2, FP2SH, and FP10SH, specifying [FF] (HFF) for the unit number sends the same contents to all of the link stations on the same network.

If there is any CPU unit other than the FP2, FP2SH, and FP10SH connected to the network, global transmission using the HFF specification should never be used.

Description

This sends the local station data for the area specified by S2 to the areas specified by the D and N of the remote stations connected with the MEWNET-W, MEWNET-P, and MEWNET-H.

The remote stations (routes and unit numbers), the transmission unit (bit unit or word unit), the transmission method, and other parameters are specified by the control data S1.

The remote station is specified by S1.

If general-purpose communication through the COM. port of the FP2, FP2SH, and FP10SH is being used, F144 (TRNS) instruction is used instead of this instruction.

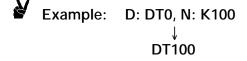
Specifying the various items Control data (S1)

Specifying the remote station

Specify the remote station by means of a route number and unit number.

The setting is entered differently depending on whether the remote station is a PLC in the same network, or a PLC in a network on a different hierarchical level.

Specifying the transmission unit and transmission method


If data is to be sent in word units, specify the data volume, and if it is to be sent in bit units, specify the position of the target bit.

Specifying the memory area of the local station (S2)

Specify the memory area of the local station in which the data to be transmitted is stored.

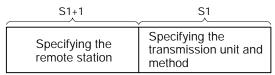
Specifying the memory area of the remote station (D) and (N)

Specify the memory area of the remote station in which the data to be transmitted is stored, specifying the type D and the address N in combination.

Flag conditions

S Error flag (R9007): Turns on and stays on when:

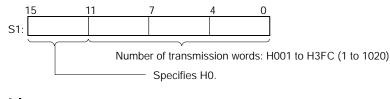
- The control data is a value outside of the specified range.
- The remote station does not exist.
- The number of words specified by S1 causes the area of S2 or D to be exceeded when word unit transmission is being used.


S Error flag (R9008): Turns on for an instant when:

- The control data is a value outside of the specified range.
- The remote station does not exist.
- The number of words specified by S1 causes the area of S2 or D to be exceeded when word unit transmission is being used.

Transmitting to a PLC within the same network

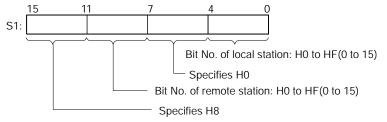
Specifying the control data (S1+1, S1)


The control data should be specified as an H constant. The transmission unit, transmission method and other parameters are specified with S1, and the remote station is specified with S1+1.

(1) Specifying word unit transmission

If word unit transmission is being used, the data for the specified number of words is sent from the memory area of the local station specified by S2, and is stored at the beginning of the memory area of the remote station specified by D and N.

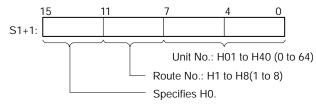
If only the MEWNET - H network is being used, up to 1,020 words can be sent at one time, and if the network is using the MEWNET - P or MEWNET - W, up to 16 words can be sent at one time.



Example:

If 10 words of data are being sent, K10(H000A) should be specified in S1.

(2) Specifying bit unit transmission

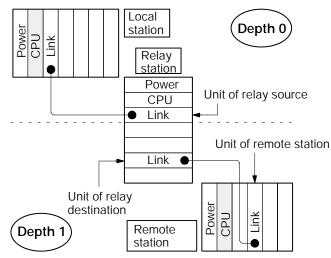

If bit unit transmission is being used, the information of the specified bit in the memory area of the local station specified by S2 is sent to the specified bit of the memory area of the remote station specified by D and N.

Example:

If the data of Bit No. 15 of the local station memory area is being sent to Bit No. 0 of the memory area in the remote station, H800F should be specified in S1.

(3) Specifying the remote station (common to both word/bit transmission)

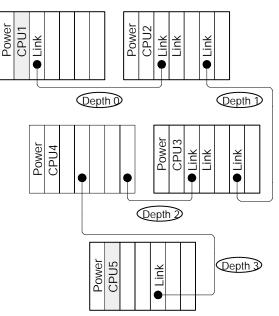
The unit number should be converted to a hexadecimal number and specified.


- For MEWNET-W: H01 to H20 (1 to 32)
- For MEWNET-P: H01 to H3F (1 to 63)
- For MEWNET-H: H01 to H40 (1 to 64)

Sending data to a PLC on a different hierarchical level

What is a hierarchical link?

A hierarchical link functions as a relay station between two link units installed on the same backplane, enabling communication between CPU units belonging to different networks.


In this way, by passing data through a relay station, communication is possible to a depth of 3.

When using the MEWNET-P and MEWNET-W, data can only be relayed one network deeper in the hierarchy.

Example: Communicating with a CPU at depth 3 (sending data from CPU1 to CPU5)

The numbers CPU1 to CPU5 have been temporarily allocated, for the purpose of indicating the relay order of the hierarchical links.

Specifying the control data (S1)

The control data should be specified as an H constant.

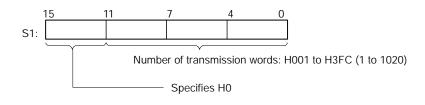
The transmission unit, transmission method and other parameters are specified with S1, and the remote station is specified with S1+1 and subsequent parameters (the relay source unit, relay destination unit, and unit targeted for communication). (depth + 3) words are required.

Example:

le: Control data when specifying a remote station which is at depth 3

S1	Specifying the tran method		
[S1+1]	Local station	Depth (H03)	CPU1
[S1+2]	Relay source	Relay destination	CPU2
[S1+3]	Relay source	Relay destination	CPU3 >
[S1+4]	Relay source	Relay destination	CPU4
[S1+5]	Remote station	H00	CPU5

-----: Same network

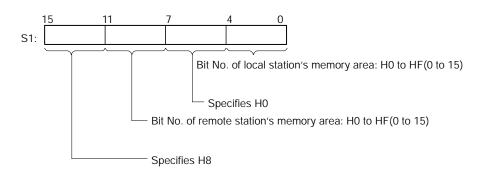

----: Same backplane

The relay source is specified by a unit No. in the network, and the relay destination is specified by a route number on the backplane.

(1) Specifying word unit transmission

If word unit transmission is being used, the data for the specified number of words is sent from the memory area of the local station specified by S2, and is stored starting from the beginning of the memory area of the remote station specified by D and N.

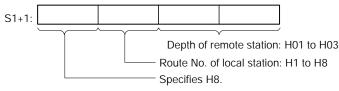
If only the MEWNET - H network is being used, up to 1,020 words can be sent at one time, and if the network is using the MEWNET - P and MEWNET - W, up to 16 words can be sent at one time.



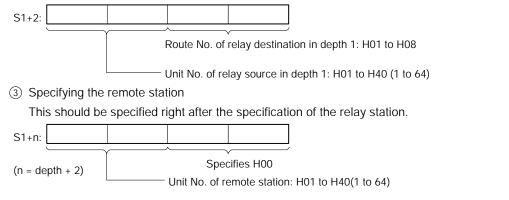
Example:

If 10 words of data are being sent, K10 (H000A) should be specified in S1.

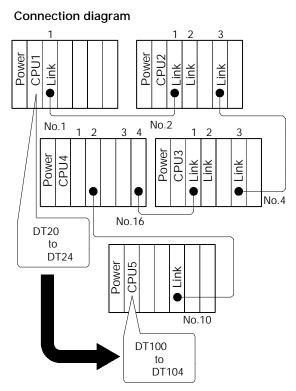
(2) Specifying bit unit transmission


If bit unit transmission is being used, the information of the specified bit in the memory area of the local station specified by S2 is sent to the specified bit of the memory area of the remote station specified by D and N.

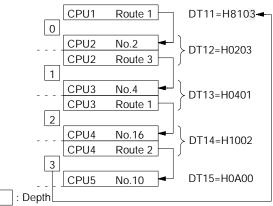
Example:


If the data of Bit No. 15 of the local station memory area is being sent to Bit No. 0 of the memory area in the remote station, H800F should be specified in S1.

- (3) Specifying the remote station (common to both word/bit transmission)
- ① Specifying the route No. and depth



Specifying the relay station


S+1 should be used to specify only the specified amount of depth, while (S1+3) is used to specify depth 2 for the same item, and (S1+4) is used to specify depth 3.

Example: When using the program example shown on page 13 - 27 In this example, the 5 words of data from DT20 to DT24 of the local station (CPU1) are sent to DT100 and subsequent addresses of the CPU unit (CPU5) shown below.

In this example, the control data beginning with DT10 (depth $3 \rightarrow 6$ words) should be specified as shown below. To send the 5 words of data \rightarrow DT10 = H0005

Precautions during programming

It is not possible to execute multiple F145 (SEND) instructions and F146 (RECV) instructions at the same time.

The program should be set up so that these instructions are executed when the MEWNET send/receive execution enabled flag (R9030) is on.

R9030	0: Execution inhibited (F145 (SEND)/F146 (RECV) instruction being executed)
	1: Execution enabled

The F145 (SEND) instruction only requests that the data be sent, but the actual processing takes place when the ED instruction is executed. The MEWNET send/receive completed flag (R9031) can be used to check whether or not the transmission has been completed.

0: Completed normally 1: Completed with error (The error code is stored in DT9039/DT90039.)
If the transmission has been completed with an error (R9031 is on), the contents of the error (error code) are stored.

For information on the contents of error codes, refer to the manual for that particular link unit. If the error code is H71 to H73, a communication time-out error has occurred. The time-out time can be changed within a range of 10.0 ms to 81.9 seconds (in units of 10 ms), using the setting of system register 32. The default value is set to 2 seconds.

Error code (HEX)	Description
H71	Time out: Waiting for transmission answer
H72	Time-out: Waiting for transmission buffer to be emptied
H73	Time-out: Waiting for response

If there is any CPU unit other than the FP2SH and FP10SH connected to the network, global transmission (sending data using the HFF specification for the unit No.) should never be used.

The **F145 (SEND)** instruction cannot be executed if the target is a special internal relay (from R9000) or a special data register (from DT9000/DT90000).

Data Receive Instructions: F146 (RECV) and P146 (PRECV)

- Receives data from another station through link units in the network.

Program example

Number of steps: 9

Ladder Diagram	Boolean				
	Address	Inst	ruction		
Trigger	10	ST	R 0		
	11	F146	(RECV)		
R0		DT	10		
10 - F146 RECV, DT10 , DT 0 , K 100 , DT50		DT	0		
		К	100		
S1 S2 N D		DT	50		

S1	Starting 16-bit area for storing control data					
S2Type of source operands for storing data in the remote station select the area by setting address 0 (source data area at another setting address 1)						
N Starting 16-bit area address for the source operand specified in S (source data area at another station).						
D	Starting 16-bit area address for storing data received (destination data area at local station).					

Operands

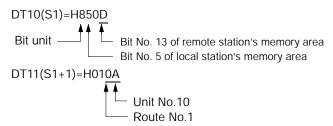
Operand		Relay Timer/Counter		Register			Index register		Constant		Index			
Operand	wx	WY	WR	WL	sv	EV	DT	LD	FL	IX (*1)	IY (*2)	к	н	modifier
S1	А	А	А	А	А	А	А	А	А	N/A	N/A	N/A	N/A	А
S2	А	А	А	А	А	А	А	А	А	N/A	N/A	N/A	N/A	N/A
Ν	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
D	N/A	А	А	А	А	А	А	А	А	N/A	N/A	N/A	N/A	А

(*1) With the FP2, FP2SH, and FP10SH, this is I0 to IC.

(*2) With the FP2, FP2SH, and FP10SH, this is ID.

Explanation of example

① Example of word unit reception When the control data is as follows:

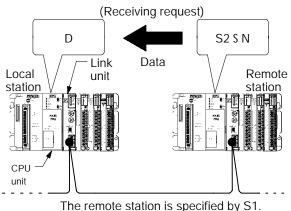

> DT10(S1)=H0005 (=K5) Word unit _____ 5 words DT11(S1+1)=H010A _____ Unit No.10 _____ Route No.1

A: Available N/A: Not Available

the data from DT100 to DT104 of the unit No. 10 connected to route No. 1 is sent to DT50 to DT54 of the local station when the internal relay R0 turns on.

② Example of bit unit reception

When the control data is as follows:



the on and off information of Bit No. 13 of DT100 of the unit No. 10 connected to route No. 1 is sent to Bit No. 5 of DT50 when the internal relay R0 turns on.

Description

This reads the data in the area specified by S2 and N of a remote station connection with the MEWNET-W, MEWNET-P, MEWNET-H, and stores it in the area specified by D of the local station.

The remote stations (routes and unit numbers), the transmission unit (bit unit or word unit), the transmission method, and other parameters are specified by the control data S1.

If general - purpose communication through the COM. port of the FP2, FP2SH, and FP10SH is being used, F144 (TRNS) instruction is used instead of this instruction.

Specifying the various items

Control data (S1)

Specifying the remote station

Specify the remote station by means of a route number and unit number.

The setting is entered differently depending on whether the remote station is a PLC in the same network, or a PLC in a network on a different hierarchical level.

Specifying the transmission unit and transmission method

If data is to be received in word units, specify the data volume, and if it is to be received in bit units, specify the position of the target bit.

Specifying the memory area of the remote station (S2) and (N)

Specify the memory area of the remote station in which the data being received is to be stored, specifying the type S2 and the address N in combination.

next page

Example: S2: DT10, N: K100 ↓ DT100

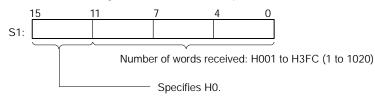
Specifying the memory area of the local station (D)

Specify the memory area of the local station in which the data received from the remote station is to be stored.

Flag conditions

S Error flag (R9007):	Turns on and stays on when:
	- The control data is a value outside of the specified range.
	- The remote station does not exist.
	 The number of words specified by S1 causes the area of S2 or D to be exceeded when word unit reception is being used.
S Error flag (R9008):	Turns on for an instant when:
	- The control data is a value outside of the specified range.
	- The remote station does not exist.
	 The number of words specified by S1 causes the area of S2 or D to be exceeded when word unit reception is being used.

Receiving from a PLC within the same network

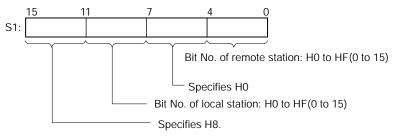

Specifying the control data (S1+1, S1)

The control data should be specified as an H constant. The transmission unit, transmission method and other parameters are specified with S1, and the remote station is specified with S1+1.

S1+1	S1
Specifying the remote station	Specifying the transmission unit and method

(1) Specifying word unit reception

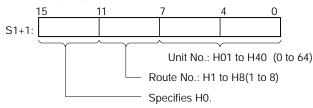
If word unit reception is being used, the data for the specified number of words is sent from the memory area of the remote station specified by S2 and N, and is stored in the memory area of the local station that starts with D. If only the MEWNET - H network is being used, up to 1,020 words can be received at one time, and if the network is using the MEWNET - P/W, up to 16 words can be received at one time.



Example:

If 10 words of data are being received, K10(H000A) should be specified in S1.

(2) Specifying bit unit reception

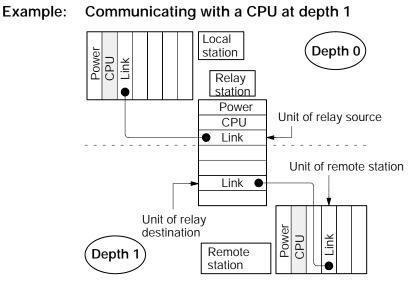

When data is being sent in bit units, the information for the specified bit of the memory area of the remote station specified by S2 and N is stored in the specified bit of the memory area of the local station specified by D.

Example:

If the data from Bit No. 0 of the memory area in the remote station is being sent to Bit No. 15 of the local station memory area, H8F00 should be specified in S1.

(3) Specifying the remote station (common to both word/bit transmission)

The unit number should be converted to a hexadecimal number and specified.

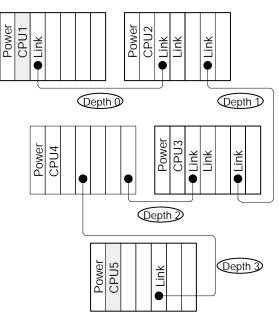

- For MEWNET-W: H01 to H20 (1 to 32)
- For MEWNET-P: H01 to H3F (1 to 63)
- For MEWNET-H: H01 to H40 (1 to 64)

Y

13.4 Table of Related Relays, Registers and Instructions

Sending data from a PLC on a different hierarchical level What is a hierarchical link?

A hierarchical link functions as a relay station between two link units installed on the same backplane, enabling communication between CPU units belonging to different networks.


In this way, by passing data through a relay station, communication is possible to a depth of 3.

Note

When using the MEWNET-P and MEWNET-W, data can only be relayed one network deeper in the hierarchy.

Example: Communicating with a CPU at depth 3 (reception from CPU5 to CPU1)

The numbers CPU1 to CPU5 have been temporarily allocated, for the purpose of indicating the relay order of the hierarchical links.

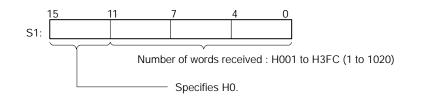
Specifying the control data (S1)

The control data should be specified as an H constant.

The transmission unit, transmission method and other parameters are specified with S1, and the remote station is specified with S1+1 and subsequent parameters (the relay source unit, relay destination unit, and unit targeted for communication). (depth + 3) words are required.

Example: Control data when specifying a remote station which is at depth 3

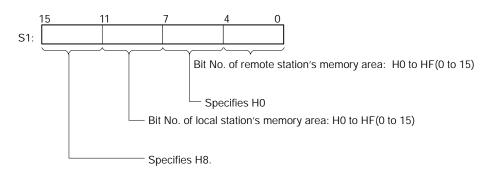
S1	Specifying t method	he trans			
[S1+1]	Local station		Depth (H03)	CPU1	
[S1+2]	Relay source		Relay destination	CPU2	
[S1+3]	Relay source -		Relay destination	CPU3	Specifying the remote station
[S1+4]	Relay source		Relay destination	CPU4	
[S1+5]	Remote station		H00	CPU5	


----: Same network

----: Same backplane

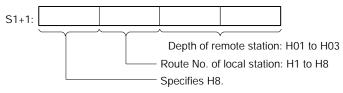
The relay source is specified by a unit No. in the network, and the relay destination is specified by a route number on the backplane.

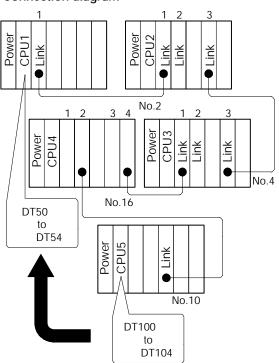
(1) Specifying word unit reception


If word unit reception is being used, the data for the specified number of words is sent from the memory area of the remote station specified by S2 and N, and is stored in the memory area of the local station beginning with D. If only the MEWNET-H network is being used, up to 1,020 words can be received at one time, and if the network is using the MEWNET-P and MEWNET-W, up to 16 words can be received at one time.

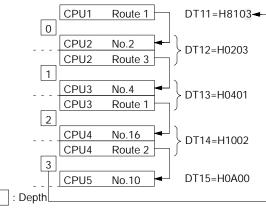
Example: If 10 words of data are being received, K10 (H000A) should be specified in S1.

(2) Specifying bit unit reception


When data is being sent in bit units, the information for the specified bit of the memory area of the remote station specified by S2 and N is stored in the specified bit of the memory area of the local station specified by D.


Example: If the data from Bit No. 0 of the memory area in the remote station is being sent to Bit 15 of the local station memory area, H8F00 should be specified in S1.

(3) Specifying the remote station (common to both word/bit transmission)


1 Specifying the route No. and depth

2 Sp	ecifying the re	elay station						
S+	1 should be u	ised to specify only the specified amount of depth, while (S1+3) is used to specify						
de	oth 2 for the s	ame item, and (S1+4) is used to specify depth 3.						
S1+2:								
		Route No. of relay destination in depth 1: H01 to H08						
		Unit No. of relay source in depth 1: H01 to H40 (1 to 64)						
3 Sp	ecifying the re	emote station						
Th	s should be s	specified right after the specification of the relay station.						
S1+n:								
	<u> </u>							
(n = de	epth + 2)	Specifies H00						
		Unit No. of remote station: H01 to H40(1 to 64)						
∦ 1	Example:	When using the program example shown on page 13 - 36. In this example, the data from DT100 to DT104 of the CPU unit (CPU5) is received in DT50 to DT54 of the local station (CPU1) shown below.						
		Connection diagram						

In this example, the control data beginning with DT10 (depth $3 \rightarrow 6$ words) should be specified as shown below. To receive the 5 words of data \rightarrow DT10 = H0005

Precautions during programming

It is not possible to execute multiple F145 (SEND) instructions and F146 (RECV) instructions at the same time.

The program should be set up so that these instructions are executed when the MEWNET send/receive execution enabled flag (R9030) is on.

R9030	0: Execution inhibited (F145 (SEND)/F146 (RECV) instruction being executed)				
	1: Execution enabled				

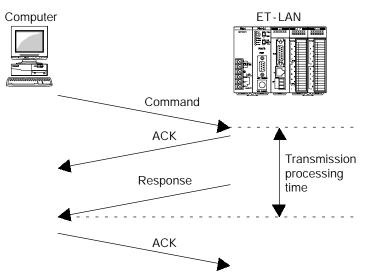
The **F146 (RECV)** instruction only requests that the data be received, but the actual processing takes place when the **ED** instruction is executed. The MEWNET send/receive completed flag (R9031) can be used to check whether or not the reception has been completed.

0: Completed normally 1: Completed with error (The error code is stored in DT9039/DT90039.)
If the transmission has been completed with an error (R9031 is on), the contents of the error (error code) are stored.

For information on the contents of error codes, refer to the manual for that particular link unit. If the error code is H71 to H73, a communication time-out error has occurred. The time-out time can be changed within a range of 10.0 ms to 81.9 seconds (in units of 10 ms), using the setting of system register 32. The default value is set to 2 seconds.

Error code (HEX)	Description
H71	Time-out: Waiting for transmission answer
H72	Time-out: Waiting for transmission buffer to be emptied
H73	Time-out: Waiting for response

The **F146 (RECV)** instruction cannot be executed if the target is a special internal relay (from R9000) or a special data register (from DT9000/DT90000).


13.5 Minimum Transmission Delay Time

The minimum transmission processing time for MEWTOCOL communication and transparent communication is determined using the formulas below. This calculation serves as a general guide for the transmission time, assuming that there is one connection being used, no other nodes exist on the network, and 1 : 1 communication is being carried out. The actual transmission time may be longer, depending on the load ratio of the network, the transmission line environment, the number of connections being used, the system configuration, and the window size.

For the processing time of the partner node, please refer to the instruction manual and other documentation for that particular device.

MEWTOCOL communication

This is a guide to the transmission processing time when the computer is issuing commands and the ET-LAN unit is returning responses. It indicates the time from the point that the ET-LAN unit receives the command, to when it sends the response.

Transmission processing time when using the computer link function

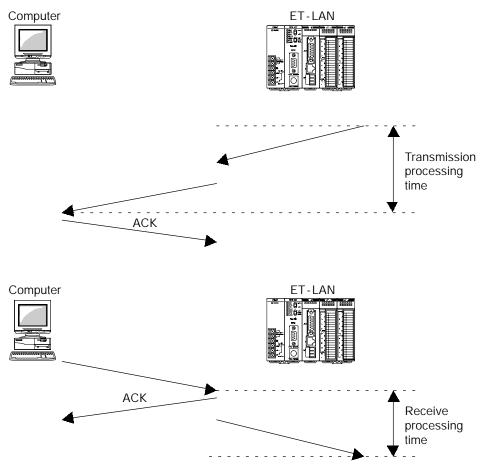
PLC being used	Communication processing method	Transmission processing time (calculation formula)
FP2 CPU	Read contact/data (RD/RCS command)	0.032 x no. of command and response data bytes + 4.8 + CPU scan time (ms)
	Write contact/data (WD/WCS command)	0.046 x no. of command and response data bytes + 4.3 + CPU scan time (ms)
FP2SH CPU	Read contact/data (RD/RCS command)	0.015 x no. of command and response data bytes + 8.7 + CPU scan time (ms)
	Write contact/data	0.022 x no. of command and response data bytes + 6.4 + CPU scan time (ms)

13.5 Minimum Transmission Delay Time

PLC being used	Communication processing method	Transmission processing time (calculation formula)
FP2 CPU	Read contact/data	0.009 x no. of command and response data bytes + 12.4 + CPU scan time (ms)
	Write contact/data	0.007 x no. of command and response data bytes + 8.5 + CPU scan time (ms)
FP2SH CPU	Read contact/data	0.013 x no. of command and response data bytes + 5.8 + CPU scan time (ms)
	Write contact/data	0.011 x no. of command and response data bytes + 4.2 + CPU scan time (ms)

Transmission processing time when using the data transmission function

The above calculation formulas are used for both TCP/IP and UDP/IP. The number of command data bytes and response data bytes are the total number of bytes, including the MEWTOCOL format header and all of the data.


Example:

When using the FP2 CPU and reading 100 words of data with the computer link function (RD command), assuming a CPU scan time of 5 ms, the following would result: Transmission processing time = $0.032 \times (32 \text{ command bytes } + 421 \text{ response bytes}) + 4.8 + 5 (ms) = \text{Approx. 24 (ms)}$

13.5 Minimum Transmission Delay Time

Transparent communication

The following is a guide to the transmission time when the ET-LAN unit is sending or receiving data.

When using TCP/IP:

Transmission processing time = $0.017 \times no.$ of transmission data bytes + 8 (ms) Receive processing time = $0.005 \times no.$ of receive data bytes + 8 (ms) When using UDP/IP:

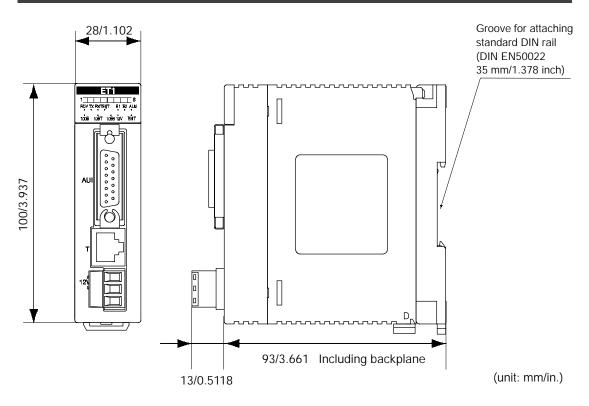
Transmission processing time = $0.017 \times no.$ of transmission data bytes + 6 (ms) Receive processing time = $0.005 \times no.$ of receive data bytes + 6 (ms)

The above calculation formula is used with both the FP2 CPU and the FP2SH CPU.

Example:

When using transparent communication to send 1,000 bytes of data:

Transmission processing time = 0.017 x 1,000 bytes + 8 (ms) = 25 (ms)


13.6 ASCII Codes

13.6 ASCII Codes

								b	7								
								b	6	0	0	0	0	1	1	1	1
								b	5	0	0	1	1	0	0	1	1
	I I I I I I I I I I I I I I I I I I I						b	4	0	1	0	1	0	1	0	1	
		1.		1.	1-				I HEX			Mos	st signi	ificant	digit		
b7	b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	b ₀	code		0	1	2	3	4	5	6	7
				0	0	0	0		0	NUL	DEL	SPACE	0	@	Ρ	,	р
				0	0	0	1		1	SOH	DC ₁	ļ	1	А	Q	а	q
				0	0	1	0		2	STX	DC ₂	"	2	В	R	b	r
				0	0	1	1		3	ETX	DC ₃	#	3	С	S	С	s
				0	1	0	0		4	EOT	DC ₄	\$	4	D	Т	d	t
				0	1	0	1		5	ENQ	NAK	%	5	E	U	е	u
				0	1	1	0	digit	6	ACK	SYN	&	6	F	V	f	v
				0	1	1	1	Least significant digit	7	BEL	ETB	,	7	G	W	g	w
				1	0	0	0	st sign	8	BS	CAN	(8	Н	Х	h	x
				1	0	0	1	Lea	9	ΗT	EM)	9	I	Y	i	У
				1	0	1	0		А	LF	SUB	*	:	J	Z	j	z
				1	0	1	1		В	VT	ESC	+	;	к	[k	{
				1	1	0	0		С	FF	FS	,	<	L	¥	I	
				1	1	0	1		D	CR	GS	-	=	М]	m	}
				1	1	1	0		E	SO	RS		>	Ν	^	n	~
				1	1	1	1		F	SI	US	/	?	0	-	0	DEL

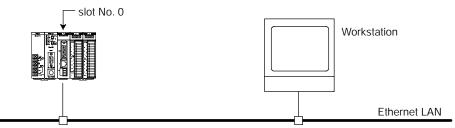
13.7 Dimensions

13.7 Dimensions

13.7 Dimensions

Chapter 14

Sample Program


14.1	Sample	Program	14 - 3
	14.1.1	An Overview of the Sample Program	14 - 3
	14.1.2	Workstation Sample Program	14 - 5
	14.1.3	Communication Setting Program on PLC Side	14 - 10

14.1 Sample Program

14.1.1 An Overview of the Sample Program

This is a sample program in which data is being sent and received between an ET-LAN unit and a workstation.

System configuration

Setting conditions

Items	ET-LAN unit	Workstation		
IP address	192.9.201.130	If the network ID is the same as that of the ET-LAN unit, no host ID needs to be specified.		
Port No.	4097	4098		
MEWTOCOL station No.	01	02		
Communication function	MEWTOCOL communication			
PROTOCOL	TCP/IP			
Open method	Unpassive	Active (bind \rightarrow connect)		

Operation overview

After a connection has been opened, the workstation uses MEWTOCOL-COM to send data to the ET-LAN unit, and writes it to the DT0 of the programmable controller. On the programmable controller side, initialization processing and open processing of the ET-LAN unit are carried out, and "01" is set as the MEWTOCOL station number.

14.1 Sample Program

Usage method

① Compile the sample program and create the execution file.

- ② Enter the RUN mode on the programmable controller side.
- ③ Run the sample program.
- (4) When the connection is successfully opened, the sample program displays the following menu and waits for input.

— Sample Menu—

0 ... Clear DATA

1 ... Set DATA

E ... End Test

Please, Push Key (0 or 1 or E)

- (5) Pressing "0" at this point writes "0H" to DT0 (check this on the programmable controller side).
- 6 Pressing "1" at this point writes "FFFFH" to DT0 (check this on the programmable controller side).
- ⑦ Pressing "E" at this point disconnects the line and exits the program.

14.1.2 Workstation Sample Program

The following shows an example of the "make file" and "source file" of the sample program run at the workstation.

make file

cc -c -g \$< -DBSD -DDEVICE = ¥"ie0¥" OBJS = fp3smp. o fp3smp: \$ (OBJS) cc -0 \$ (OBJS) -0 \$@ chmod g+rwx \$@ \$ (OBJS) : \$<

source file

<pre>#include <studio. h=""> #include <errno .="" h=""> #include <ctype. h=""> #include <string. h=""> #include <sys types.h=""> #include <sys h="" socket.=""> #include <netdb. h=""> #include <netinet. h=""></netinet.></netdb.></sys></sys></string.></ctype.></errno></studio.></pre>		
#define D_SRC_PORT #define D_DST_IP #define D_DST_PORT	4098 ″192. 9. 201. 130″ 4097	/* Source node port No. */ /* Partner node IP address */ /* Partner node port No. */
#define MEW_DST_NO #define MEW_SRC_NO	1 2	/* Partner node MEWTOCOL station number */ /* Source node MEWTOCOL station number */
#define OK #define ERROR	0 1	
<pre>struct MEWTOCOL_stc {</pre>	ar datasize_L ; ar datasize_H ; ar COMorDAT ; ar reserved [5] ; ar dst_rout ;	/* Data size H */
struct MEWTOCOL_stc	senddata, recvedat	a ; /* Communication buffer */
int sno ;		/* Socket */

14.1 Sample Program

```
/* Function prototype declaration */
extern int main () :
extern int MewtocolClientOpen ();
extern int MewtocolSample ();
extern int MewtocolSendAndReceive ();
extern unsigned char BCC ();
int main (argc, argv)
int argc ;
char *argv [];
{
       /* Connection is opened */
       if (MewtocolClientOpen () !=OK ) {
            puts ("Can't open connection !");
           return (ERROR);
       }
       /* Communication is carried out */
       MewtocolSample ();
       /* Line is disconnected and processing is terminated */
       close (sno);
       return (OK);
  ______
  = Connection is opened with partner node
  =
  =
                    OK: Opening successfully completed.
  =
    Return
                    ERROR: Connection could not be opened.
  =
  =
  */
int MewtocolClientOpen ()
{
       struct sockaddr_in SrcAddr ;
                                            /* Information of source node */
       struct sockaddr_in DstAddr ;
                                            /* Information of partner node */
       int err ;
       /* Socket is created */
       if ( ( sno = socket ( AF_INET , SOCK_STREAM , 0 ) ) < 0 ) {
            return (ERROR);
                                             /* Socket cannot be created */
       }
       /* Source node address is allocated to the socket that was created*/
       SrcAddr. sin_family = AF_INET ;
       SrcAddr. sin_addr. s_addr = INADDR_ANY ;
       SrcAddr. sin_port = htons (D_SRC_PORT) ;
       if ((err = bind (sno, (struct sockaddr *) & SrcAddr, sizeof (SrcAddr))) < 0) {
            /* Source node address cannot be allocated to the socket */
            close (sno);
            return (ERROR);
       }
```

14.1 Sample Program

```
/* Requests connection to partner node */
      DstAddr. sin_family
                           = AF_INET ;
      DsAddr. sin_addr. s_addr = inet_addr ( D_DST_IP ) ;
      DstAddr. sin_port
                           = htons ( D_DST_PORT ) ;
      if ((err = connect (sno, (struct sockaddr *) &DstAddr, sizeof (DstAddr))) < 0) {
          /* Connection with partner node could not be established */
          close (sno);
          return (ERROR);
      }
      return (OK);
}
  _____
  = After sample menu has been displayed, selection is made and processing carried out
   =
  = Return OK: Successfully completed
           ERROR: Error occurred, processing terminated
  =
    int MewtocolSample ()
LMenu:
      puts ("0 - - - Clear Data");
      puts ("1 - - - Set Data");
      puts ("E - - - End Test") ;
      printf (" Please, Push Key (0 or 1 or E) ");
      for (;;) {
          switch (getchar ()) {
               case '0' :
                          printf (" Clear Data ");
                          if (MewtocolSendAndReceive ("<01#WDD00000000000000")) {
                              return (ERROR);
                          break ;
               case '1' :
                          printf (" Set Data ") ;
                          if (MewtocolSendAndReceive ("<01#WDD000000000FFFF")) {
                              return (ERROR);
                          break ;
               case 'E' :
               case 'e' :
                          puts (" Bye Bye. ") ;
                          return (OK);
               case '¥n' :
                          break ;
               default:
                          puts ("Bad Command");
                          goto LMenu ;
            }
      }
```

{

```
= Sends MEWTOCOL communication data and waits for response
 =Input unsigned char *cmd : MEWTOCOL command being sent
 =
 = Return OK: Successfully completed
       ERROR: Error occurred, processing terminated
 =
 =
 int MewtocolSendAndReceive ( cmd )
unsigned char *cmd ;
       int len ;
       int sendsize, recvsize ;
       int senddatasize ;
       int err ;
       len = strlen ( cmd ) ;
                                             /* Size of actual data section (command) */
       senddatasize = len
                                             /* BCC size */
                          +2
                                             /* CR size */
                          +1;
       /* Creates MEWTOCOL header */
       senddata. FTI = 0x10 ;
       senddata. padding = 0;
                                                           /* Fixed 0 */
       senddata. datasize_L = (unsigned char) senddatasize ;
                                                          /* Data size L*/
       senddata. datasize_H = senddatasize/256 ;
                                                           /* Data size H */
       senddata. COMorDAT = 0x00 /* 0x00 : MEWTOCOL-COM 0x02 : MEWTOCOL-DAT */
                                                           /* Fixed 0 */
       senddata. reserved [0] = 0;
       senddata. reserved [1] = 0 ;
                                                           /* Fixed 0 */
       senddata. reserved [2] = 0;
                                                           /* Fixed 0 */
                                                           /* Fixed 0 */
       senddata. reserved [3] = 0;
       senddata. reserved [4] = 0 ;
                                                          /* Fixed 0 */
       senddata. dst_rout = MEW_DST_NO ;
                                                          /* Destination for MEWTOCOL station number */
       senddata. src_rout = MEW_SRC_NO ;
                                                          /*Source for MEWTOCOL station number */
       /* MEWTOCOL data section created */
       /* (1) Command copied to data section */
       /* (2) BCC is determined and added at end of actual data using 2-byte ASCII hexadecimal code */
       /* (3) CR (0x0D) added at end */
       sprintf (senddata. data, "%s%02X%c", cmd, BCD (cmd, len), 0x0D);
       /* Determines overall transmission size */
                                             /* Size of expansion header section */
       sendsize = 12
                                             /* Size of data section */
                 +senddatasize ;
       /* Sends to partner station */
       if ( ( crr = send ( sno, (char * ) & senddata, sendsize, 0 ) ) < 0 ) {
            return (ERROR); /* Send error */
       }
```

14.1 Sample Program

```
/* Receives response from partner node */
           /* Determines overall reception size */
      recvsize = 12
                                /* Size of expansion header section */
                                /* Size of response command section */
                +6
                +2
                                /* BCC size */
                                /* CR size */
                +1;
      if ( ( err = recv ( sno, ( char * ) & recvdata, recvsize. 0 ) ) < 0 ) {
           return (ERROR);
                                /* Receive error */
      }
      /* Analyzes response data section */
      switch (recvdata. data [3]) {
           case '$': /* Normal response */
                puts ("OK");
                break ;
           case '!' :
                      /* Error response was received */
                puts ("ERROR RESPONSE RECEIVED");
                printf ("ERROR CODE %c%c%¥n", recvdata. data [4], recvdata. data [5]);
                break ;
           default :
                       /* System error (Unexpected response was returned) */
                puts ("SYSTEM ERROR");
                return (ERROR);
      }
      return (OK);
}
/*
  ------
  = Determines BCC
  =
  =Input unsigned char *data : MEWTOCOL string of determined data
           int len : MEWTOCOL string data size
  =
  =
  = Return BCC value
   unsigned char BCC (data, len)
unsigned char *data ;
int len ;
{
       unsigned char ans ;
      for (ans = *data++; - - len;) {
           ans = *data++ ;
       }
      return (ans);
}
```

14.1 Sample Program

14.1.3 Communication Setting Program on PLC Side

When the PLC is put in RUN mode, initialization and open processing are carried out for the ET-LAN unit, and "01" is set for the MEWTOCOL station number.

Internal relay allocation

Classification	Device number	Devices used in sample program
Complete signal area	R0 to R1F	RC Initialization complete signal
Request signal area	R40 to R5F	R4CInitialization request signalR50Open request signal (Connection 1)

Data register allocation

Classification of processing	Device number	Setting item	Setting for program example
Initialization processing	DT10 to DT11	IP address	192. 9. 201. 130 (C009C982H)
	DT12	Communication function setting between networks	Not used
	DT13	MEWTOCOL station number	01
Open processing	DT20	Open method	MEWTOCOL communication TCP/IP Unpassive open
	DT21	Source node port No.	4097
	DT25	Partner node MEWTOCOL station number	02

Program example

R9010	-[F150 READ s on relay [F151 WRT		Н 0	, V	H 360 , H VR 4 , H signal area	С	, WR 0 Complete signal are , H 368]— — ∷]— —	Allocation of complete signal area (R0 to R1F) Allocation of request signal area (R40 to R5F)	Allocation of handshake area for internal relays
R9013	-[F1 DMV ration pulse rel [F0 MV [F0 MV	ay '	К 0	, C	от 10) — от 12) — от 13) —			·	IP address=192. 9. 201. 130 (HC009C982) Communication between networks not used MEWTOCOL station number 01	Initialization processing
R9014	F151 WRT			, C	DT 10 , k	K 4	, H 200 Initialization requ]— — R4C — []— est signal	Write to shared memory Execute initialization processing	J
R9013	EO MV tation pulse rel FO MV FO MV	ay ,	K 4097 K 2	, C , C	DT 20]- DT 21]- DT 25]- DT 20 , K	— — — — — — — К 6	, H 250	— — — — — —]— — — _{R50} _	TCP/IP. Unpassive open. MEWTOCOL [®] communication Source node port No. 4097 Partner node MEWTOCOL station number 02 Write to shared memory	Open processing
Initializ	zation complete	e si	ignal				Open comple	ete signal	Execute open processing after init- ialization processing finishes	J

Record of changes

Manual No.	Date	Desceiption of changes
ARCT1F322E/ ACG-M322E	APR.2001	First edition
ARCT1F322E-1/ ACG-M322E-1	NOV.2001	Second edition Chapter12 Page12-5,12-10,12-11to12-13:corrected Page12-25,12-28:corrected
ARCT1F322E-2/ ACG-M322E-2	NOV.2006	Third edition

These materials are printed on ECF pulp. These materials are printed with earth-friendly vegetable-based (soybean oil) ink.

Matsushita Electric Works, Ltd.

Automation Controls Company

Head Office: 1048, Kadoma, Kadoma-shi, Osaka 571-8686, Japan

- Telephone: +81-6-6908-1050
- Facsimile: +81-6-6908-5781
- http://www.mew.co.jp/ac/e/fasys/

All Rights Reserved © 2006 COPYRIGHT Matsushita Electric Works, Ltd.

Please contact

ARCT1F322E-2 200611 ACG-M322E-2

Specifications are subject to change without notice.